/*- * * * Copyright 2015 Skymind,Inc. * * * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * */ package org.deeplearning4j.nn.params; import org.deeplearning4j.nn.api.ParamInitializer; import org.deeplearning4j.nn.conf.NeuralNetConfiguration; import org.deeplearning4j.nn.conf.distribution.Distributions; import org.deeplearning4j.nn.weights.WeightInit; import org.deeplearning4j.nn.weights.WeightInitUtil; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.api.rng.distribution.Distribution; import org.nd4j.linalg.factory.Nd4j; import org.nd4j.linalg.indexing.NDArrayIndex; import java.util.Collections; import java.util.LinkedHashMap; import java.util.Map; /** * Initialize Center Loss params. * * @author Justin Long (@crockpotveggies) * @author Alex Black (@AlexDBlack) */ public class CenterLossParamInitializer extends DefaultParamInitializer { private static final CenterLossParamInitializer INSTANCE = new CenterLossParamInitializer(); public static CenterLossParamInitializer getInstance() { return INSTANCE; } public final static String WEIGHT_KEY = DefaultParamInitializer.WEIGHT_KEY; public final static String BIAS_KEY = DefaultParamInitializer.BIAS_KEY; public final static String CENTER_KEY = "cL"; @Override public int numParams(NeuralNetConfiguration conf) { org.deeplearning4j.nn.conf.layers.FeedForwardLayer layerConf = (org.deeplearning4j.nn.conf.layers.FeedForwardLayer) conf.getLayer(); int nIn = layerConf.getNIn(); int nOut = layerConf.getNOut(); // also equal to numClasses return nIn * nOut + nOut + nIn * nOut; //weights + bias + embeddings } @Override public Map<String, INDArray> init(NeuralNetConfiguration conf, INDArray paramsView, boolean initializeParams) { Map<String, INDArray> params = Collections.synchronizedMap(new LinkedHashMap<String, INDArray>()); org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer layerConf = (org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer) conf.getLayer(); int nIn = layerConf.getNIn(); int nOut = layerConf.getNOut(); // also equal to numClasses int wEndOffset = nIn * nOut; int bEndOffset = wEndOffset + nOut; int cEndOffset = bEndOffset + nIn * nOut; INDArray weightView = paramsView.get(NDArrayIndex.point(0), NDArrayIndex.interval(0, wEndOffset)); INDArray biasView = paramsView.get(NDArrayIndex.point(0), NDArrayIndex.interval(wEndOffset, bEndOffset)); INDArray centerLossView = paramsView.get(NDArrayIndex.point(0), NDArrayIndex.interval(bEndOffset, cEndOffset)) .reshape('c', nOut, nIn); params.put(WEIGHT_KEY, createWeightMatrix(conf, weightView, initializeParams)); params.put(BIAS_KEY, createBias(conf, biasView, initializeParams)); params.put(CENTER_KEY, createCenterLossMatrix(conf, centerLossView, initializeParams)); conf.addVariable(WEIGHT_KEY); conf.addVariable(BIAS_KEY); conf.addVariable(CENTER_KEY); return params; } @Override public Map<String, INDArray> getGradientsFromFlattened(NeuralNetConfiguration conf, INDArray gradientView) { org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer layerConf = (org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer) conf.getLayer(); int nIn = layerConf.getNIn(); int nOut = layerConf.getNOut(); // also equal to numClasses int wEndOffset = nIn * nOut; int bEndOffset = wEndOffset + nOut; int cEndOffset = bEndOffset + nIn * nOut; // note: numClasses == nOut INDArray weightGradientView = gradientView.get(NDArrayIndex.point(0), NDArrayIndex.interval(0, wEndOffset)) .reshape('f', nIn, nOut); INDArray biasView = gradientView.get(NDArrayIndex.point(0), NDArrayIndex.interval(wEndOffset, bEndOffset)); //Already a row vector INDArray centerLossView = gradientView.get(NDArrayIndex.point(0), NDArrayIndex.interval(bEndOffset, cEndOffset)) .reshape('c', nOut, nIn); Map<String, INDArray> out = new LinkedHashMap<>(); out.put(WEIGHT_KEY, weightGradientView); out.put(BIAS_KEY, biasView); out.put(CENTER_KEY, centerLossView); return out; } protected INDArray createCenterLossMatrix(NeuralNetConfiguration conf, INDArray centerLossView, boolean initializeParameters) { org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer layerConf = (org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer) conf.getLayer(); if (initializeParameters) { centerLossView.assign(0.0); } return centerLossView; } }