package org.deeplearning4j.parallelism;
import org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator;
import org.deeplearning4j.earlystopping.EarlyStoppingConfiguration;
import org.deeplearning4j.earlystopping.EarlyStoppingModelSaver;
import org.deeplearning4j.earlystopping.EarlyStoppingResult;
import org.deeplearning4j.earlystopping.saver.InMemoryModelSaver;
import org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator;
import org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition;
import org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition;
import org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition;
import org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.Updater;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.junit.Test;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import java.util.concurrent.TimeUnit;
import static org.junit.Assert.*;
public class TestParallelEarlyStopping {
// parallel training results vary wildly with expected result
// need to determine if this test is feasible, and how it should
// be properly designed
// @Test
// public void testEarlyStoppingIris(){
// MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
// .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
// .updater(Updater.SGD)
// .weightInit(WeightInit.XAVIER)
// .list()
// .layer(0,new OutputLayer.Builder().nIn(4).nOut(3).lossFunction(LossFunctions.LossFunction.MCXENT).build())
// .pretrain(false).backprop(true)
// .build();
// MultiLayerNetwork net = new MultiLayerNetwork(conf);
// net.setListeners(new ScoreIterationListener(1));
//
// DataSetIterator irisIter = new IrisDataSetIterator(50,600);
// EarlyStoppingModelSaver<MultiLayerNetwork> saver = new InMemoryModelSaver<>();
// EarlyStoppingConfiguration<MultiLayerNetwork> esConf = new EarlyStoppingConfiguration.Builder<MultiLayerNetwork>()
// .epochTerminationConditions(new MaxEpochsTerminationCondition(5))
// .evaluateEveryNEpochs(1)
// .iterationTerminationConditions(new MaxTimeIterationTerminationCondition(1, TimeUnit.MINUTES))
// .scoreCalculator(new DataSetLossCalculator(irisIter,true))
// .modelSaver(saver)
// .build();
//
// IEarlyStoppingTrainer<MultiLayerNetwork> trainer = new EarlyStoppingParallelTrainer<>(esConf,net,irisIter,null,2,2,1);
//
// EarlyStoppingResult<MultiLayerNetwork> result = trainer.fit();
// System.out.println(result);
//
// assertEquals(5, result.getTotalEpochs());
// assertEquals(EarlyStoppingResult.TerminationReason.EpochTerminationCondition,result.getTerminationReason());
// Map<Integer,Double> scoreVsIter = result.getScoreVsEpoch();
// assertEquals(5,scoreVsIter.size());
// String expDetails = esConf.getEpochTerminationConditions().get(0).toString();
// assertEquals(expDetails, result.getTerminationDetails());
//
// MultiLayerNetwork out = result.getBestModel();
// assertNotNull(out);
//
// //Check that best score actually matches (returned model vs. manually calculated score)
// MultiLayerNetwork bestNetwork = result.getBestModel();
// irisIter.reset();
// double score = bestNetwork.score(irisIter.next());
// assertEquals(result.getBestModelScore(), score, 1e-4);
// }
@Test
public void testEarlyStoppingEveryNEpoch() {
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.updater(Updater.SGD).weightInit(WeightInit.XAVIER).list()
.layer(0, new OutputLayer.Builder().nIn(4).nOut(3)
.lossFunction(LossFunctions.LossFunction.MCXENT).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.setListeners(new ScoreIterationListener(1));
DataSetIterator irisIter = new IrisDataSetIterator(50, 600);
EarlyStoppingModelSaver<MultiLayerNetwork> saver = new InMemoryModelSaver<>();
EarlyStoppingConfiguration<MultiLayerNetwork> esConf =
new EarlyStoppingConfiguration.Builder<MultiLayerNetwork>()
.epochTerminationConditions(new MaxEpochsTerminationCondition(5))
.scoreCalculator(new DataSetLossCalculator(irisIter, true))
.evaluateEveryNEpochs(2).modelSaver(saver).build();
IEarlyStoppingTrainer<MultiLayerNetwork> trainer =
new EarlyStoppingParallelTrainer<>(esConf, net, irisIter, null, 2, 6, 1);
EarlyStoppingResult<MultiLayerNetwork> result = trainer.fit();
System.out.println(result);
assertEquals(5, result.getTotalEpochs());
assertEquals(EarlyStoppingResult.TerminationReason.EpochTerminationCondition, result.getTerminationReason());
}
@Test
public void testBadTuning() {
//Test poor tuning (high LR): should terminate on MaxScoreIterationTerminationCondition
Nd4j.getRandom().setSeed(12345);
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.updater(Updater.SGD).learningRate(1.0) //Intentionally huge LR
.weightInit(WeightInit.XAVIER).list()
.layer(0, new OutputLayer.Builder().nIn(4).nOut(3).activation(Activation.SOFTMAX)
.lossFunction(LossFunctions.LossFunction.MCXENT).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.setListeners(new ScoreIterationListener(1));
DataSetIterator irisIter = new IrisDataSetIterator(10, 150);
EarlyStoppingModelSaver<MultiLayerNetwork> saver = new InMemoryModelSaver<>();
EarlyStoppingConfiguration<MultiLayerNetwork> esConf =
new EarlyStoppingConfiguration.Builder<MultiLayerNetwork>()
.epochTerminationConditions(new MaxEpochsTerminationCondition(5000))
.iterationTerminationConditions(
new MaxTimeIterationTerminationCondition(1, TimeUnit.MINUTES),
new MaxScoreIterationTerminationCondition(10)) //Initial score is ~2.5
.scoreCalculator(new DataSetLossCalculator(irisIter, true)).modelSaver(saver)
.build();
IEarlyStoppingTrainer<MultiLayerNetwork> trainer =
new EarlyStoppingParallelTrainer<>(esConf, net, irisIter, null, 2, 2, 1);
EarlyStoppingResult result = trainer.fit();
assertTrue(result.getTotalEpochs() < 5);
assertEquals(EarlyStoppingResult.TerminationReason.IterationTerminationCondition,
result.getTerminationReason());
String expDetails = new MaxScoreIterationTerminationCondition(10).toString();
assertEquals(expDetails, result.getTerminationDetails());
assertTrue(result.getBestModelEpoch() <= 0);
assertNotNull(result.getBestModel());
}
}