/*- * * * Copyright 2015 Skymind,Inc. * * * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * */ package org.deeplearning4j.nn.conf.layers; import lombok.*; import org.deeplearning4j.nn.api.Layer; import org.deeplearning4j.nn.api.ParamInitializer; import org.deeplearning4j.nn.conf.NeuralNetConfiguration; import org.deeplearning4j.nn.params.LSTMParamInitializer; import org.deeplearning4j.optimize.api.IterationListener; import org.deeplearning4j.util.LayerValidation; import org.nd4j.linalg.activations.IActivation; import org.nd4j.linalg.activations.impl.ActivationSigmoid; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.Collection; import java.util.Map; /** * LSTM recurrent net without peephole connections. * * @see GravesLSTM GravesLSTM class for an alternative LSTM (with peephole connections) */ @Data @NoArgsConstructor @ToString(callSuper = true) @EqualsAndHashCode(callSuper = true) public class LSTM extends AbstractLSTM { private double forgetGateBiasInit; private IActivation gateActivationFn = new ActivationSigmoid(); private LSTM(Builder builder) { super(builder); this.forgetGateBiasInit = builder.forgetGateBiasInit; this.gateActivationFn = builder.gateActivationFn; } @Override public Layer instantiate(NeuralNetConfiguration conf, Collection<IterationListener> iterationListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams) { LayerValidation.assertNInNOutSet("LSTM", getLayerName(), layerIndex, getNIn(), getNOut()); org.deeplearning4j.nn.layers.recurrent.LSTM ret = new org.deeplearning4j.nn.layers.recurrent.LSTM(conf); ret.setListeners(iterationListeners); ret.setIndex(layerIndex); ret.setParamsViewArray(layerParamsView); Map<String, INDArray> paramTable = initializer().init(conf, layerParamsView, initializeParams); ret.setParamTable(paramTable); ret.setConf(conf); return ret; } @Override public ParamInitializer initializer() { return LSTMParamInitializer.getInstance(); } @AllArgsConstructor public static class Builder extends AbstractLSTM.Builder<Builder> { @SuppressWarnings("unchecked") public LSTM build() { return new LSTM(this); } } }