/*- * * * Copyright 2015 Skymind,Inc. * * * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * */ package org.deeplearning4j.util; import org.deeplearning4j.berkeley.Pair; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.ArrayList; import java.util.List; import java.util.Random; public class InputSplit { private InputSplit() {} public static void splitInputs(INDArray inputs, INDArray outcomes, List<Pair<INDArray, INDArray>> train, List<Pair<INDArray, INDArray>> test, double split) { List<Pair<INDArray, INDArray>> list = new ArrayList<>(); for (int i = 0; i < inputs.rows(); i++) { list.add(new Pair<>(inputs.getRow(i), outcomes.getRow(i))); } splitInputs(list, train, test, split); } public static void splitInputs(List<Pair<INDArray, INDArray>> pairs, List<Pair<INDArray, INDArray>> train, List<Pair<INDArray, INDArray>> test, double split) { Random rand = new Random(); for (Pair<INDArray, INDArray> pair : pairs) if (rand.nextDouble() <= split) train.add(pair); else test.add(pair); } }