/*- * * * Copyright 2015 Skymind,Inc. * * * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * */ package org.deeplearning4j.text.movingwindow; import org.deeplearning4j.models.word2vec.Word2Vec; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.factory.Nd4j; import org.nd4j.linalg.util.FeatureUtil; import java.util.ArrayList; import java.util.List; public class WordConverter { private List<String> sentences = new ArrayList<>(); private Word2Vec vec; private List<Window> windows; public WordConverter(List<String> sentences, Word2Vec vec) { this.sentences = sentences; this.vec = vec; } public static INDArray toInputMatrix(List<Window> windows, Word2Vec vec) { int columns = vec.lookupTable().layerSize() * vec.getWindow(); int rows = windows.size(); INDArray ret = Nd4j.create(rows, columns); for (int i = 0; i < rows; i++) { ret.putRow(i, WindowConverter.asExampleMatrix(windows.get(i), vec)); } return ret; } public INDArray toInputMatrix() { List<Window> windows = allWindowsForAllSentences(); return toInputMatrix(windows, vec); } public static INDArray toLabelMatrix(List<String> labels, List<Window> windows) { int columns = labels.size(); INDArray ret = Nd4j.create(windows.size(), columns); for (int i = 0; i < ret.rows(); i++) { ret.putRow(i, FeatureUtil.toOutcomeVector(labels.indexOf(windows.get(i).getLabel()), labels.size())); } return ret; } public INDArray toLabelMatrix(List<String> labels) { List<Window> windows = allWindowsForAllSentences(); return toLabelMatrix(labels, windows); } private List<Window> allWindowsForAllSentences() { if (windows != null) return windows; windows = new ArrayList<>(); for (String s : sentences) if (!s.isEmpty()) windows.addAll(Windows.windows(s)); return windows; } }