/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.plot;
import org.apache.commons.io.IOUtils;
import org.junit.Before;
import org.junit.Test;
// import org.nd4j.jita.conf.CudaEnvironment;
import org.nd4j.linalg.api.buffer.DataBuffer;
import org.nd4j.linalg.api.buffer.util.DataTypeUtil;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.io.ClassPathResource;
import java.io.File;
import java.util.List;
import static org.junit.Assert.assertEquals;
/**
* Created by agibsonccc on 10/1/14.
*/
public class BarnesHutTsneTest {
@Before
public void setUp() {
// CudaEnvironment.getInstance().getConfiguration().enableDebug(true).setVerbose(false);
}
@Test
public void testTsne() throws Exception {
Nd4j.ENFORCE_NUMERICAL_STABILITY = true;
DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
Nd4j.getRandom().setSeed(123);
BarnesHutTsne b = new BarnesHutTsne.Builder().stopLyingIteration(10).setMaxIter(10).theta(0.5).learningRate(500)
.useAdaGrad(false).build();
ClassPathResource resource = new ClassPathResource("/mnist2500_X.txt");
File f = resource.getTempFileFromArchive();
INDArray data = Nd4j.readNumpy(f.getAbsolutePath(), " ").get(NDArrayIndex.interval(0, 100),
NDArrayIndex.interval(0, 784));
ClassPathResource labels = new ClassPathResource("mnist2500_labels.txt");
List<String> labelsList = IOUtils.readLines(labels.getInputStream()).subList(0, 100);
b.fit(data);
}
@Test
public void testBuilderFields() throws Exception {
final double theta = 0;
final boolean invert = false;
final String similarityFunctions = "euclidean";
final int maxIter = 1;
final double realMin = 1.0;
final double initialMomentum = 2.0;
final double finalMomentum = 3.0;
final double momentum = 4.0;
final int switchMomentumIteration = 1;
final boolean normalize = false;
final int stopLyingIteration = 100;
final double tolerance = 1e-1;
final double learningRate = 100;
final boolean useAdaGrad = false;
final double perplexity = 1.0;
final double minGain = 1.0;
BarnesHutTsne b = new BarnesHutTsne.Builder().theta(theta).invertDistanceMetric(invert)
.similarityFunction(similarityFunctions).setMaxIter(maxIter).setRealMin(realMin)
.setInitialMomentum(initialMomentum).setFinalMomentum(finalMomentum).setMomentum(momentum)
.setSwitchMomentumIteration(switchMomentumIteration).normalize(normalize)
.stopLyingIteration(stopLyingIteration).tolerance(tolerance).learningRate(learningRate)
.perplexity(perplexity).minGain(minGain).build();
final double DELTA = 1e-15;
assertEquals(theta, b.getTheta(), DELTA);
assertEquals("invert", invert, b.isInvert());
assertEquals("similarityFunctions", similarityFunctions, b.getSimiarlityFunction());
assertEquals("maxIter", maxIter, b.maxIter);
assertEquals(realMin, b.realMin, DELTA);
assertEquals(initialMomentum, b.initialMomentum, DELTA);
assertEquals(finalMomentum, b.finalMomentum, DELTA);
assertEquals(momentum, b.momentum, DELTA);
assertEquals("switchMomentumnIteration", switchMomentumIteration, b.switchMomentumIteration);
assertEquals("normalize", normalize, b.normalize);
assertEquals("stopLyingInMemoryLookupTable.javaIteration", stopLyingIteration, b.stopLyingIteration);
assertEquals(tolerance, b.tolerance, DELTA);
assertEquals(learningRate, b.learningRate, DELTA);
assertEquals("useAdaGrad", useAdaGrad, b.useAdaGrad);
assertEquals(perplexity, b.getPerplexity(), DELTA);
assertEquals(minGain, b.minGain, DELTA);
}
}