/*** * ASM: a very small and fast Java bytecode manipulation framework * Copyright (c) 2000-2011 INRIA, France Telecom * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ package org.eclipse.persistence.internal.libraries.asm.tree.analysis; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import org.eclipse.persistence.internal.libraries.asm.tree.IincInsnNode; import org.eclipse.persistence.internal.libraries.asm.Opcodes; import org.eclipse.persistence.internal.libraries.asm.Type; import org.eclipse.persistence.internal.libraries.asm.tree.AbstractInsnNode; import org.eclipse.persistence.internal.libraries.asm.tree.InsnList; import org.eclipse.persistence.internal.libraries.asm.tree.JumpInsnNode; import org.eclipse.persistence.internal.libraries.asm.tree.LabelNode; import org.eclipse.persistence.internal.libraries.asm.tree.LookupSwitchInsnNode; import org.eclipse.persistence.internal.libraries.asm.tree.MethodNode; import org.eclipse.persistence.internal.libraries.asm.tree.TableSwitchInsnNode; import org.eclipse.persistence.internal.libraries.asm.tree.TryCatchBlockNode; import org.eclipse.persistence.internal.libraries.asm.tree.VarInsnNode; /** * A semantic bytecode analyzer. <i>This class does not fully check that JSR and * RET instructions are valid.</i> * * @param <V> * type of the Value used for the analysis. * * @author Eric Bruneton */ public class Analyzer<V extends Value> implements Opcodes { private final Interpreter<V> interpreter; private int n; private InsnList insns; private List<TryCatchBlockNode>[] handlers; private Frame<V>[] frames; private Subroutine[] subroutines; private boolean[] queued; private int[] queue; private int top; /** * Constructs a new {@link Analyzer}. * * @param interpreter * the interpreter to be used to symbolically interpret the * bytecode instructions. */ public Analyzer(final Interpreter<V> interpreter) { this.interpreter = interpreter; } /** * Analyzes the given method. * * @param owner * the internal name of the class to which the method belongs. * @param m * the method to be analyzed. * @return the symbolic state of the execution stack frame at each bytecode * instruction of the method. The size of the returned array is * equal to the number of instructions (and labels) of the method. A * given frame is <tt>null</tt> if and only if the corresponding * instruction cannot be reached (dead code). * @throws AnalyzerException * if a problem occurs during the analysis. */ @SuppressWarnings("unchecked") public Frame<V>[] analyze(final String owner, final MethodNode m) throws AnalyzerException { if ((m.access & (ACC_ABSTRACT | ACC_NATIVE)) != 0) { frames = (Frame<V>[]) new Frame<?>[0]; return frames; } n = m.instructions.size(); insns = m.instructions; handlers = (List<TryCatchBlockNode>[]) new List<?>[n]; frames = (Frame<V>[]) new Frame<?>[n]; subroutines = new Subroutine[n]; queued = new boolean[n]; queue = new int[n]; top = 0; // computes exception handlers for each instruction for (int i = 0; i < m.tryCatchBlocks.size(); ++i) { TryCatchBlockNode tcb = m.tryCatchBlocks.get(i); int begin = insns.indexOf(tcb.start); int end = insns.indexOf(tcb.end); for (int j = begin; j < end; ++j) { List<TryCatchBlockNode> insnHandlers = handlers[j]; if (insnHandlers == null) { insnHandlers = new ArrayList<TryCatchBlockNode>(); handlers[j] = insnHandlers; } insnHandlers.add(tcb); } } // computes the subroutine for each instruction: Subroutine main = new Subroutine(null, m.maxLocals, null); List<AbstractInsnNode> subroutineCalls = new ArrayList<AbstractInsnNode>(); Map<LabelNode, Subroutine> subroutineHeads = new HashMap<LabelNode, Subroutine>(); findSubroutine(0, main, subroutineCalls); while (!subroutineCalls.isEmpty()) { JumpInsnNode jsr = (JumpInsnNode) subroutineCalls.remove(0); Subroutine sub = subroutineHeads.get(jsr.label); if (sub == null) { sub = new Subroutine(jsr.label, m.maxLocals, jsr); subroutineHeads.put(jsr.label, sub); findSubroutine(insns.indexOf(jsr.label), sub, subroutineCalls); } else { sub.callers.add(jsr); } } for (int i = 0; i < n; ++i) { if (subroutines[i] != null && subroutines[i].start == null) { subroutines[i] = null; } } // initializes the data structures for the control flow analysis Frame<V> current = newFrame(m.maxLocals, m.maxStack); Frame<V> handler = newFrame(m.maxLocals, m.maxStack); current.setReturn(interpreter.newValue(Type.getReturnType(m.desc))); Type[] args = Type.getArgumentTypes(m.desc); int local = 0; if ((m.access & ACC_STATIC) == 0) { Type ctype = Type.getObjectType(owner); current.setLocal(local++, interpreter.newValue(ctype)); } for (int i = 0; i < args.length; ++i) { current.setLocal(local++, interpreter.newValue(args[i])); if (args[i].getSize() == 2) { current.setLocal(local++, interpreter.newValue(null)); } } while (local < m.maxLocals) { current.setLocal(local++, interpreter.newValue(null)); } merge(0, current, null); init(owner, m); // control flow analysis while (top > 0) { int insn = queue[--top]; Frame<V> f = frames[insn]; Subroutine subroutine = subroutines[insn]; queued[insn] = false; AbstractInsnNode insnNode = null; try { insnNode = m.instructions.get(insn); int insnOpcode = insnNode.getOpcode(); int insnType = insnNode.getType(); if (insnType == AbstractInsnNode.LABEL || insnType == AbstractInsnNode.LINE || insnType == AbstractInsnNode.FRAME) { merge(insn + 1, f, subroutine); newControlFlowEdge(insn, insn + 1); } else { current.init(f).execute(insnNode, interpreter); subroutine = subroutine == null ? null : subroutine.copy(); if (insnNode instanceof JumpInsnNode) { JumpInsnNode j = (JumpInsnNode) insnNode; if (insnOpcode != GOTO && insnOpcode != JSR) { merge(insn + 1, current, subroutine); newControlFlowEdge(insn, insn + 1); } int jump = insns.indexOf(j.label); if (insnOpcode == JSR) { merge(jump, current, new Subroutine(j.label, m.maxLocals, j)); } else { merge(jump, current, subroutine); } newControlFlowEdge(insn, jump); } else if (insnNode instanceof LookupSwitchInsnNode) { LookupSwitchInsnNode lsi = (LookupSwitchInsnNode) insnNode; int jump = insns.indexOf(lsi.dflt); merge(jump, current, subroutine); newControlFlowEdge(insn, jump); for (int j = 0; j < lsi.labels.size(); ++j) { LabelNode label = lsi.labels.get(j); jump = insns.indexOf(label); merge(jump, current, subroutine); newControlFlowEdge(insn, jump); } } else if (insnNode instanceof TableSwitchInsnNode) { TableSwitchInsnNode tsi = (TableSwitchInsnNode) insnNode; int jump = insns.indexOf(tsi.dflt); merge(jump, current, subroutine); newControlFlowEdge(insn, jump); for (int j = 0; j < tsi.labels.size(); ++j) { LabelNode label = tsi.labels.get(j); jump = insns.indexOf(label); merge(jump, current, subroutine); newControlFlowEdge(insn, jump); } } else if (insnOpcode == RET) { if (subroutine == null) { throw new AnalyzerException(insnNode, "RET instruction outside of a sub routine"); } for (int i = 0; i < subroutine.callers.size(); ++i) { JumpInsnNode caller = subroutine.callers.get(i); int call = insns.indexOf(caller); if (frames[call] != null) { merge(call + 1, frames[call], current, subroutines[call], subroutine.access); newControlFlowEdge(insn, call + 1); } } } else if (insnOpcode != ATHROW && (insnOpcode < IRETURN || insnOpcode > RETURN)) { if (subroutine != null) { if (insnNode instanceof VarInsnNode) { int var = ((VarInsnNode) insnNode).var; subroutine.access[var] = true; if (insnOpcode == LLOAD || insnOpcode == DLOAD || insnOpcode == LSTORE || insnOpcode == DSTORE) { subroutine.access[var + 1] = true; } } else if (insnNode instanceof IincInsnNode) { int var = ((IincInsnNode) insnNode).var; subroutine.access[var] = true; } } merge(insn + 1, current, subroutine); newControlFlowEdge(insn, insn + 1); } } List<TryCatchBlockNode> insnHandlers = handlers[insn]; if (insnHandlers != null) { for (int i = 0; i < insnHandlers.size(); ++i) { TryCatchBlockNode tcb = insnHandlers.get(i); Type type; if (tcb.type == null) { type = Type.getObjectType("java/lang/Throwable"); } else { type = Type.getObjectType(tcb.type); } int jump = insns.indexOf(tcb.handler); if (newControlFlowExceptionEdge(insn, tcb)) { handler.init(f); handler.clearStack(); handler.push(interpreter.newValue(type)); merge(jump, handler, subroutine); } } } } catch (AnalyzerException e) { throw new AnalyzerException(e.node, "Error at instruction " + insn + ": " + e.getMessage(), e); } catch (Exception e) { throw new AnalyzerException(insnNode, "Error at instruction " + insn + ": " + e.getMessage(), e); } } return frames; } private void findSubroutine(int insn, final Subroutine sub, final List<AbstractInsnNode> calls) throws AnalyzerException { while (true) { if (insn < 0 || insn >= n) { throw new AnalyzerException(null, "Execution can fall off end of the code"); } if (subroutines[insn] != null) { return; } subroutines[insn] = sub.copy(); AbstractInsnNode node = insns.get(insn); // calls findSubroutine recursively on normal successors if (node instanceof JumpInsnNode) { if (node.getOpcode() == JSR) { // do not follow a JSR, it leads to another subroutine! calls.add(node); } else { JumpInsnNode jnode = (JumpInsnNode) node; findSubroutine(insns.indexOf(jnode.label), sub, calls); } } else if (node instanceof TableSwitchInsnNode) { TableSwitchInsnNode tsnode = (TableSwitchInsnNode) node; findSubroutine(insns.indexOf(tsnode.dflt), sub, calls); for (int i = tsnode.labels.size() - 1; i >= 0; --i) { LabelNode l = tsnode.labels.get(i); findSubroutine(insns.indexOf(l), sub, calls); } } else if (node instanceof LookupSwitchInsnNode) { LookupSwitchInsnNode lsnode = (LookupSwitchInsnNode) node; findSubroutine(insns.indexOf(lsnode.dflt), sub, calls); for (int i = lsnode.labels.size() - 1; i >= 0; --i) { LabelNode l = lsnode.labels.get(i); findSubroutine(insns.indexOf(l), sub, calls); } } // calls findSubroutine recursively on exception handler successors List<TryCatchBlockNode> insnHandlers = handlers[insn]; if (insnHandlers != null) { for (int i = 0; i < insnHandlers.size(); ++i) { TryCatchBlockNode tcb = insnHandlers.get(i); findSubroutine(insns.indexOf(tcb.handler), sub, calls); } } // if insn does not falls through to the next instruction, return. switch (node.getOpcode()) { case GOTO: case RET: case TABLESWITCH: case LOOKUPSWITCH: case IRETURN: case LRETURN: case FRETURN: case DRETURN: case ARETURN: case RETURN: case ATHROW: return; } insn++; } } /** * Returns the symbolic stack frame for each instruction of the last * recently analyzed method. * * @return the symbolic state of the execution stack frame at each bytecode * instruction of the method. The size of the returned array is * equal to the number of instructions (and labels) of the method. A * given frame is <tt>null</tt> if the corresponding instruction * cannot be reached, or if an error occured during the analysis of * the method. */ public Frame<V>[] getFrames() { return frames; } /** * Returns the exception handlers for the given instruction. * * @param insn * the index of an instruction of the last recently analyzed * method. * @return a list of {@link TryCatchBlockNode} objects. */ public List<TryCatchBlockNode> getHandlers(final int insn) { return handlers[insn]; } /** * Initializes this analyzer. This method is called just before the * execution of control flow analysis loop in #analyze. The default * implementation of this method does nothing. * * @param owner * the internal name of the class to which the method belongs. * @param m * the method to be analyzed. * @throws AnalyzerException * if a problem occurs. */ protected void init(String owner, MethodNode m) throws AnalyzerException { } /** * Constructs a new frame with the given size. * * @param nLocals * the maximum number of local variables of the frame. * @param nStack * the maximum stack size of the frame. * @return the created frame. */ protected Frame<V> newFrame(final int nLocals, final int nStack) { return new Frame<V>(nLocals, nStack); } /** * Constructs a new frame that is identical to the given frame. * * @param src * a frame. * @return the created frame. */ protected Frame<V> newFrame(final Frame<? extends V> src) { return new Frame<V>(src); } /** * Creates a control flow graph edge. The default implementation of this * method does nothing. It can be overriden in order to construct the * control flow graph of a method (this method is called by the * {@link #analyze analyze} method during its visit of the method's code). * * @param insn * an instruction index. * @param successor * index of a successor instruction. */ protected void newControlFlowEdge(final int insn, final int successor) { } /** * Creates a control flow graph edge corresponding to an exception handler. * The default implementation of this method does nothing. It can be * overridden in order to construct the control flow graph of a method (this * method is called by the {@link #analyze analyze} method during its visit * of the method's code). * * @param insn * an instruction index. * @param successor * index of a successor instruction. * @return true if this edge must be considered in the data flow analysis * performed by this analyzer, or false otherwise. The default * implementation of this method always returns true. */ protected boolean newControlFlowExceptionEdge(final int insn, final int successor) { return true; } /** * Creates a control flow graph edge corresponding to an exception handler. * The default implementation of this method delegates to * {@link #newControlFlowExceptionEdge(int, int) * newControlFlowExceptionEdge(int, int)}. It can be overridden in order to * construct the control flow graph of a method (this method is called by * the {@link #analyze analyze} method during its visit of the method's * code). * * @param insn * an instruction index. * @param tcb * TryCatchBlockNode corresponding to this edge. * @return true if this edge must be considered in the data flow analysis * performed by this analyzer, or false otherwise. The default * implementation of this method delegates to * {@link #newControlFlowExceptionEdge(int, int) * newControlFlowExceptionEdge(int, int)}. */ protected boolean newControlFlowExceptionEdge(final int insn, final TryCatchBlockNode tcb) { return newControlFlowExceptionEdge(insn, insns.indexOf(tcb.handler)); } // ------------------------------------------------------------------------- private void merge(final int insn, final Frame<V> frame, final Subroutine subroutine) throws AnalyzerException { Frame<V> oldFrame = frames[insn]; Subroutine oldSubroutine = subroutines[insn]; boolean changes; if (oldFrame == null) { frames[insn] = newFrame(frame); changes = true; } else { changes = oldFrame.merge(frame, interpreter); } if (oldSubroutine == null) { if (subroutine != null) { subroutines[insn] = subroutine.copy(); changes = true; } } else { if (subroutine != null) { changes |= oldSubroutine.merge(subroutine); } } if (changes && !queued[insn]) { queued[insn] = true; queue[top++] = insn; } } private void merge(final int insn, final Frame<V> beforeJSR, final Frame<V> afterRET, final Subroutine subroutineBeforeJSR, final boolean[] access) throws AnalyzerException { Frame<V> oldFrame = frames[insn]; Subroutine oldSubroutine = subroutines[insn]; boolean changes; afterRET.merge(beforeJSR, access); if (oldFrame == null) { frames[insn] = newFrame(afterRET); changes = true; } else { changes = oldFrame.merge(afterRET, interpreter); } if (oldSubroutine != null && subroutineBeforeJSR != null) { changes |= oldSubroutine.merge(subroutineBeforeJSR); } if (changes && !queued[insn]) { queued[insn] = true; queue[top++] = insn; } } }