/******************************************************************************* * Copyright (c) 1998, 2015 Oracle and/or its affiliates. All rights reserved. * This program and the accompanying materials are made available under the * terms of the Eclipse Public License v1.0 and Eclipse Distribution License v. 1.0 * which accompanies this distribution. * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html * and the Eclipse Distribution License is available at * http://www.eclipse.org/org/documents/edl-v10.php. * * Contributors: * Oracle - initial API and implementation from Oracle TopLink ******************************************************************************/ package org.eclipse.persistence.internal.sessions; import org.eclipse.persistence.descriptors.ClassDescriptor; import org.eclipse.persistence.internal.helper.DescriptorCompare; import java.util.*; /** * This class calculates a commit order for a series of classes * based on the dependencies between them. It builds up a graph of * dependencies (CommitOrderDependencyNodes) then applies topological * sort to them to get an ordering. * This is a throwaway class, which exists only for the lifetime of * the calculation. * * The algorithm is described in the method comment for orderCommits(). * This class also includes static methods for quicksort, copied from * the standard libraries and adapted for these objects, since that * seemed like the easiest way to sort. */ public class CommitOrderCalculator { protected int currentTime; protected Vector nodes; protected Vector orderedDescriptors; protected AbstractSession session; public CommitOrderCalculator(AbstractSession session) { super(); this.currentTime = 0; this.nodes = new Vector(1); this.session = session; } protected void addNode(ClassDescriptor d) { nodes.addElement(new CommitOrderDependencyNode(this, d, session)); } public void addNodes(Vector descriptors) { Enumeration descriptorsEnum = descriptors.elements(); while (descriptorsEnum.hasMoreElements()) { ClassDescriptor descriptor = (ClassDescriptor)descriptorsEnum.nextElement(); addNode(descriptor); } } /** * Add to each node the dependent nodes */ public void calculateMappingDependencies() { for (Enumeration e = nodes.elements(); e.hasMoreElements();) { CommitOrderDependencyNode node = (CommitOrderDependencyNode)e.nextElement(); node.recordMappingDependencies(); } } /** * Add to each node the dependent nodes */ public void calculateSpecifiedDependencies() { for (Enumeration e = nodes.elements(); e.hasMoreElements();) { CommitOrderDependencyNode node = (CommitOrderDependencyNode)e.nextElement(); node.recordSpecifiedDependencies(); } } public void depthFirstSearch() { /* * Traverse the entire graph in breadth-first order. When finished, every node will have a * predecessor which indicates the node that came before it in the search * It will also have a discovery time (the value of the counter when we first saw it) and * finishingTime (the value of the counter after we've visited all the adjacent nodes). * See Cormen, Leiserson and Rivest, Section 23.3, page 477 for a full explanation of the algorithm */ //Setup for (Enumeration e = getNodes().elements(); e.hasMoreElements();) { CommitOrderDependencyNode node = (CommitOrderDependencyNode)e.nextElement(); node.markNotVisited(); node.setPredecessor(null); } currentTime = 0; //Execution for (Enumeration e = getNodes().elements(); e.hasMoreElements();) { CommitOrderDependencyNode node = (CommitOrderDependencyNode)e.nextElement(); if (node.hasNotBeenVisited()) { node.visit(); } } } /* Support for quicksort */ /* * Implement the doCompare method. */ private static int doCompare(Object o1, Object o2) { // I don't care if they're equal, and I want to sort largest first. int first; // I don't care if they're equal, and I want to sort largest first. int second; first = ((CommitOrderDependencyNode)o1).getFinishingTime(); second = ((CommitOrderDependencyNode)o2).getFinishingTime(); if (first == second) { return new DescriptorCompare().compare( ((CommitOrderDependencyNode)o1).getDescriptor(), ((CommitOrderDependencyNode)o2).getDescriptor()); } if (first > second) { return 1; } else { return -1; } } public int getNextTime() { int result = currentTime; currentTime++; return result; } public Vector getNodes() { return nodes; } /** * Return the constraint ordered classes. */ public Vector getOrderedClasses() { Vector orderedClasses = org.eclipse.persistence.internal.helper.NonSynchronizedVector.newInstance(getOrderedDescriptors().size()); for (Enumeration orderedDescriptorsEnum = getOrderedDescriptors().elements(); orderedDescriptorsEnum.hasMoreElements();) { orderedClasses.addElement(((ClassDescriptor)orderedDescriptorsEnum.nextElement()).getJavaClass()); } return orderedClasses; } /** * Return the constraint ordered descriptors. */ public Vector getOrderedDescriptors() { return orderedDescriptors; } public CommitOrderDependencyNode nodeFor(Class c) { for (Enumeration e = nodes.elements(); e.hasMoreElements();) { CommitOrderDependencyNode n = (CommitOrderDependencyNode)e.nextElement(); if (n.getDescriptor().getJavaClass() == c) { return n; } } return null; } public CommitOrderDependencyNode nodeFor(ClassDescriptor d) { for (Enumeration e = nodes.elements(); e.hasMoreElements();) { CommitOrderDependencyNode n = (CommitOrderDependencyNode)e.nextElement(); if (n.getDescriptor() == d) { return n; } } return null; } /** * Calculate the commit order. * Do a depth first search on the graph, skipping nodes that we have * already visited or are in the process of visiting. Keep a counter * and note when we first encounter a node and when we finish visiting * it. Once we've visited everything, sort nodes by finishing time */ public void orderCommits() { depthFirstSearch(); Object[] nodeArray = new Object[nodes.size()]; nodes.copyInto(nodeArray); quicksort(nodeArray); Vector result = new Vector(nodes.size()); for (int i = 0; i < nodes.size(); i++) { CommitOrderDependencyNode node = (CommitOrderDependencyNode)nodeArray[i]; result.addElement(node.getDescriptor()); } this.orderedDescriptors = result; } /** * Perform a sort using the specified comparator object. */ private static void quicksort(Object[] arr) { quicksort(arr, 0, arr.length - 1); } /** * quicksort the array of objects. * * @param arr[] - an array of objects * @param left - the start index - from where to begin sorting * @param right - the last index. */ private static void quicksort(Object[] arr, int left, int right) { int i; int last; if (left >= right) {/* do nothing if array contains fewer than two */ return;/* two elements */ } swap(arr, left, (left + right) / 2); last = left; for (i = left + 1; i <= right; i++) { if (doCompare(arr[i], arr[left]) < 0) { swap(arr, ++last, i); } } swap(arr, left, last); quicksort(arr, left, last - 1); quicksort(arr, last + 1, right); } private static void swap(Object[] arr, int i, int j) { Object tmp; tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } }