/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain * * * Modified by Vladimir Blagojevic to include lock amortized eviction. * For more details see http://www.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-09-1.pdf * https://jira.jboss.org/jira/browse/ISPN-299 * */ package org.infinispan.util.concurrent; import java.io.IOException; import java.io.Serializable; import java.util.AbstractCollection; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.Collection; import java.util.Collections; import java.util.ConcurrentModificationException; import java.util.Enumeration; import java.util.HashMap; import java.util.HashSet; import java.util.Hashtable; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.LinkedList; import java.util.Map; import java.util.NoSuchElementException; import java.util.Set; import java.util.concurrent.ConcurrentLinkedQueue; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.locks.ReentrantLock; /** * A hash table supporting full concurrency of retrievals and adjustable expected concurrency for * updates. This class obeys the same functional specification as {@link java.util.Hashtable}, and * includes versions of methods corresponding to each method of <tt>Hashtable</tt>. However, even * though all operations are thread-safe, retrieval operations do <em>not</em> entail locking, and * there is <em>not</em> any support for locking the entire table in a way that prevents all access. * This class is fully interoperable with <tt>Hashtable</tt> in programs that rely on its thread * safety but not on its synchronization details. * * <p> * Retrieval operations (including <tt>get</tt>) generally do not block, so may overlap with update * operations (including <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results of the * most recently <em>completed</em> update operations holding upon their onset. For aggregate * operations such as <tt>putAll</tt> and <tt>clear</tt>, concurrent retrievals may reflect * insertion or removal of only some entries. Similarly, Iterators and Enumerations return elements * reflecting the state of the hash table at some point at or since the creation of the * iterator/enumeration. They do <em>not</em> throw {@link ConcurrentModificationException}. * However, iterators are designed to be used by only one thread at a time. * * <p> * The allowed concurrency among update operations is guided by the optional * <tt>concurrencyLevel</tt> constructor argument (default <tt>16</tt>), which is used as a hint for * internal sizing. The table is internally partitioned to try to permit the indicated number of * concurrent updates without contention. Because placement in hash tables is essentially random, * the actual concurrency will vary. Ideally, you should choose a value to accommodate as many * threads as will ever concurrently modify the table. Using a significantly higher value than you * need can waste space and time, and a significantly lower value can lead to thread contention. But * overestimates and underestimates within an order of magnitude do not usually have much noticeable * impact. A value of one is appropriate when it is known that only one thread will modify and all * others will only read. Also, resizing this or any other kind of hash table is a relatively slow * operation, so, when possible, it is a good idea to provide estimates of expected table sizes in * constructors. * * <p> * This class and its views and iterators implement all of the <em>optional</em> methods of the * {@link Map} and {@link Iterator} interfaces. * * <p> * Like {@link Hashtable} but unlike {@link HashMap}, this class does <em>not</em> allow * <tt>null</tt> to be used as a key or value. * * <p> * This class is a member of the <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @since 1.5 * @author Doug Lea * @param <K> * the type of keys maintained by this map * @param <V> * the type of mapped values */ public class BufferedConcurrentHashMap<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V>, Serializable { private static final long serialVersionUID = 7249069246763182397L; /* * The basic strategy is to subdivide the table among Segments, each of which itself is a * concurrently readable hash table. */ /* ---------------- Constants -------------- */ /** * The default initial capacity for this table, used when not otherwise specified in a * constructor. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The default load factor for this table, used when not otherwise specified in a constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table, used when not otherwise specified in a * constructor. */ static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** * The maximum capacity, used if a higher value is implicitly specified by either of the * constructors with arguments. MUST be a power of two <= 1<<30 to ensure that entries are * indexable using ints. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The maximum number of segments to allow; used to bound constructor arguments. */ static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /** * Number of unsynchronized retries in size and containsValue methods before resorting to * locking. This is used to avoid unbounded retries if tables undergo continuous modification * which would make it impossible to obtain an accurate result. */ static final int RETRIES_BEFORE_LOCK = 2; /* ---------------- Fields -------------- */ /** * Mask value for indexing into segments. The upper bits of a key's hash code are used to choose * the segment. */ final int segmentMask; /** * Shift value for indexing within segments. */ final int segmentShift; /** * The segments, each of which is a specialized hash table */ final Segment<K, V>[] segments; transient Set<K> keySet; transient Set<Map.Entry<K, V>> entrySet; transient Collection<V> values; /* ---------------- Small Utilities -------------- */ /** * Applies a supplemental hash function to a given hashCode, which defends against poor quality * hash functions. This is critical because ConcurrentHashMap uses power-of-two length hash * tables, that otherwise encounter collisions for hashCodes that do not differ in lower or * upper bits. */ private static int hash(int h) { // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); } /** * Returns the segment that should be used for key with given hash * * @param hash * the hash code for the key * @return the segment */ final Segment<K, V> segmentFor(int hash) { return segments[(hash >>> segmentShift) & segmentMask]; } /* ---------------- Inner Classes -------------- */ /** * ConcurrentHashMap list entry. Note that this is never exported out as a user-visible * Map.Entry. * * Because the value field is volatile, not final, it is legal wrt the Java Memory Model for an * unsynchronized reader to see null instead of initial value when read via a data race. * Although a reordering leading to this is not likely to ever actually occur, the * Segment.readValueUnderLock method is used as a backup in case a null (pre-initialized) value * is ever seen in an unsynchronized access method. */ static final class HashEntry<K, V> { final K key; final int hash; volatile V value; final HashEntry<K, V> next; volatile Recency state; HashEntry(K key, int hash, HashEntry<K, V> next, V value) { this.key = key; this.hash = hash; this.next = next; this.value = value; this.state = Recency.HIR_RESIDENT; } public int hashCode() { int result = 17; result = (result * 31) + hash; result = (result * 31) + key.hashCode(); return result; } public boolean equals(Object o) { // HashEntry is internal class, never leaks out of CHM, hence slight optimization if (this == o) return true; if (o == null) return false; HashEntry<?, ?> other = (HashEntry<?, ?>) o; return hash == other.hash && key.equals(other.key); } public void transitionHIRResidentToLIRResident() { assert state == Recency.HIR_RESIDENT; state = Recency.LIR_RESIDENT; } public void transitionHIRResidentToHIRNonResident() { assert state == Recency.HIR_RESIDENT; state = Recency.HIR_NONRESIDENT; } public void transitionHIRNonResidentToLIRResident() { assert state == Recency.HIR_NONRESIDENT; state = Recency.LIR_RESIDENT; } public void transitionLIRResidentToHIRResident() { assert state == Recency.LIR_RESIDENT; state = Recency.HIR_RESIDENT; } public Recency recency() { return state; } @SuppressWarnings("unchecked") static <K, V> HashEntry<K, V>[] newArray(int i) { return new HashEntry[i]; } } private enum Recency { HIR_RESIDENT, LIR_RESIDENT, HIR_NONRESIDENT } public enum Eviction { NONE { //@Override public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) { return new NullEvictionPolicy<K, V>(); } }, LRU { //@Override public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) { return new LRU<K, V>(s,capacity,lf,capacity*10,lf); } }, LIRS { //@Override public <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf) { return new LIRS<K,V>(s,capacity,lf,capacity*10,lf); } }; abstract <K, V> EvictionPolicy<K, V> make(Segment<K, V> s, int capacity, float lf); } public interface EvictionListener<K, V> { void evicted(K key, V value); } static class NullEvictionListener<K,V> implements EvictionListener<K, V>{ //@Override public void evicted(K key, V value) { } } interface EvictionPolicy<K, V> { public final static int MAX_BATCH_SIZE = 64; /** * Invokes eviction policy algorithm and returns set of evicted entries. * * <p> * Set cannot be null but could possibly be an empty set. * * @return set of evicted entries. */ Set<HashEntry<K, V>> execute(); /** * Invoked to notify EvictionPolicy implementation that there has been an attempt to access * an entry in Segment, however that entry was not present in Segment. * * @param e * accessed entry in Segment */ void onEntryMiss(HashEntry<K, V> e); /** * Invoked to notify EvictionPolicy implementation that an entry in Segment has been * accessed. Returns true if batching threshold has been reached, false otherwise. * <p> * Note that this method is potentially invoked without holding a lock on Segment. * * @return true if batching threshold has been reached, false otherwise. * * @param e * accessed entry in Segment */ boolean onEntryHit(HashEntry<K, V> e); /** * Invoked to notify EvictionPolicy implementation that an entry e has been removed from * Segment. * * @param e * removed entry in Segment */ void onEntryRemove(HashEntry<K, V> e); /** * Invoked to notify EvictionPolicy implementation that all Segment entries have been * cleared. * */ void clear(); /** * Returns type of eviction algorithm (strategy). * * @return type of eviction algorithm */ Eviction strategy(); /** * Returns true if batching threshold has expired, false otherwise. * <p> * Note that this method is potentially invoked without holding a lock on Segment. * * @return true if batching threshold has expired, false otherwise. */ boolean thresholdExpired(); } static class NullEvictionPolicy<K, V> implements EvictionPolicy<K, V> { //@Override public void clear() { } //@Override public Set<HashEntry<K, V>> execute() { return Collections.emptySet(); } //@Override public boolean onEntryHit(HashEntry<K, V> e) { return false; } //@Override public void onEntryMiss(HashEntry<K, V> e) { } //@Override public void onEntryRemove(HashEntry<K, V> e) { } //@Override public boolean thresholdExpired() { return false; } //@Override public Eviction strategy() { return Eviction.NONE; } } static final class LRU<K, V> implements EvictionPolicy<K, V> { private final ConcurrentLinkedQueue<HashEntry<K, V>> accessQueue; private final Segment<K,V> segment; private final LinkedList<HashEntry<K, V>> lruQueue; private final int maxBatchQueueSize; private final int trimDownSize; private final float batchThresholdFactor; public LRU(Segment<K,V> s, int capacity, float lf, int maxBatchSize, float batchThresholdFactor) { this.segment = s; this.trimDownSize = (int) (capacity * lf); this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize; this.batchThresholdFactor = batchThresholdFactor; this.accessQueue = new ConcurrentLinkedQueue<HashEntry<K, V>>(); this.lruQueue = new LinkedList<HashEntry<K, V>>(); } //@Override public Set<HashEntry<K, V>> execute() { Set<HashEntry<K, V>> evicted = Collections.emptySet(); if (isOverflow()) { evicted = new HashSet<HashEntry<K, V>>(); } try { for (HashEntry<K, V> e : accessQueue) { if (lruQueue.remove(e)) { lruQueue.addFirst(e); } } while (isOverflow()) { HashEntry<K, V> first = lruQueue.getLast(); segment.remove(first.key, first.hash, null); evicted.add(first); } } finally { accessQueue.clear(); } return evicted; } private boolean isOverflow() { return lruQueue.size() > trimDownSize; } //@Override public void onEntryMiss(HashEntry<K, V> e) { lruQueue.addFirst(e); } /* * Invoked without holding a lock on Segment */ //@Override public boolean onEntryHit(HashEntry<K, V> e) { accessQueue.add(e); return accessQueue.size() >= maxBatchQueueSize * batchThresholdFactor; } /* * Invoked without holding a lock on Segment */ //@Override public boolean thresholdExpired() { return accessQueue.size() >= maxBatchQueueSize; } //@Override public void onEntryRemove(HashEntry<K, V> e) { assert lruQueue.remove(e); // we could have multiple instances of e in accessQueue; remove them all while (accessQueue.remove(e)) ; } //@Override public void clear() { lruQueue.clear(); accessQueue.clear(); } //@Override public Eviction strategy() { return Eviction.LRU; } } static final class LIRS<K, V> implements EvictionPolicy<K, V> { private final static int MIN_HIR_SIZE = 2; private final Segment<K,V> segment; private final ConcurrentLinkedQueue<HashEntry<K, V>> accessQueue; private final LinkedHashMap<Integer, HashEntry<K, V>> stack; private final LinkedList<HashEntry<K, V>> queue; private final int maxBatchQueueSize; private final int lirSizeLimit; private final int hirSizeLimit; private int currentLIRSize; private final float batchThresholdFactor; public LIRS(Segment<K,V> s, int capacity, float lf, int maxBatchSize, float batchThresholdFactor) { this.segment = s; int tmpLirSize = (int) (capacity * 0.9); int tmpHirSizeLimit = capacity - tmpLirSize; if (tmpHirSizeLimit < MIN_HIR_SIZE) { hirSizeLimit = MIN_HIR_SIZE; lirSizeLimit = capacity - hirSizeLimit; } else { hirSizeLimit = tmpHirSizeLimit; lirSizeLimit = tmpLirSize; } this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize; this.batchThresholdFactor = batchThresholdFactor; this.accessQueue = new ConcurrentLinkedQueue<HashEntry<K, V>>(); this.stack = new LinkedHashMap<Integer, HashEntry<K, V>>(); this.queue = new LinkedList<HashEntry<K, V>>(); } //@Override public Set<HashEntry<K, V>> execute() { Set<HashEntry<K, V>> evicted = new HashSet<HashEntry<K, V>>(); try { for (HashEntry<K, V> e : accessQueue) { if (present(e)) { if (e.recency() == Recency.LIR_RESIDENT) { handleLIRHit(e, evicted); } else if (e.recency() == Recency.HIR_RESIDENT) { handleHIRHit(e, evicted); } } } removeFromSegment(evicted); } finally { accessQueue.clear(); } return evicted; } private void handleHIRHit(HashEntry<K, V> e, Set<HashEntry<K, V>> evicted) { boolean inStack = stack.containsKey(e.hashCode()); if (inStack) stack.remove(e.hashCode()); // first put on top of the stack stack.put(e.hashCode(), e); if (inStack) { assert queue.contains(e); queue.remove(e); e.transitionHIRResidentToLIRResident(); switchBottomostLIRtoHIRAndPrune(evicted); } else { assert queue.contains(e); queue.remove(e); queue.addLast(e); } } private void handleLIRHit(HashEntry<K, V> e, Set<HashEntry<K, V>> evicted) { stack.remove(e.hashCode()); stack.put(e.hashCode(), e); for (Iterator<HashEntry<K, V>> i = stack.values().iterator(); i.hasNext();) { HashEntry<K, V> next = i.next(); if (next.recency() == Recency.LIR_RESIDENT) { break; } else { i.remove(); evicted.add(next); } } } private boolean present(HashEntry<K, V> e) { return stack.containsKey(e.hashCode()) || queue.contains(e); } //@Override public void onEntryMiss(HashEntry<K, V> e) { // initialization if (currentLIRSize + 1 < lirSizeLimit) { currentLIRSize++; e.transitionHIRResidentToLIRResident(); stack.put(e.hashCode(), e); } else { if (queue.size() < hirSizeLimit) { assert !queue.contains(e); queue.addLast(e); } else { boolean inStack = stack.containsKey(e.hashCode()); HashEntry<K, V> first = queue.removeFirst(); assert first.recency() == Recency.HIR_RESIDENT; first.transitionHIRResidentToHIRNonResident(); stack.put(e.hashCode(), e); if (inStack) { e.transitionHIRResidentToLIRResident(); Set<HashEntry<K, V>> evicted = new HashSet<HashEntry<K, V>>(); switchBottomostLIRtoHIRAndPrune(evicted); removeFromSegment(evicted); } else { assert !queue.contains(e); queue.addLast(e); } // evict from segment segment.remove(first.key, first.hash, null); } } } private void removeFromSegment(Set<HashEntry<K, V>> evicted) { for (HashEntry<K, V> e : evicted) { segment.remove(e.key, e.hash, null); } } private void switchBottomostLIRtoHIRAndPrune(Set<HashEntry<K, V>> evicted) { boolean seenFirstLIR = false; for (Iterator<HashEntry<K, V>> i = stack.values().iterator(); i.hasNext();) { HashEntry<K, V> next = i.next(); if (next.recency() == Recency.LIR_RESIDENT) { if (!seenFirstLIR) { seenFirstLIR = true; i.remove(); next.transitionLIRResidentToHIRResident(); assert !queue.contains(next); queue.addLast(next); } else { break; } } else { i.remove(); evicted.add(next); } } } /* * Invoked without holding a lock on Segment */ //@Override public boolean onEntryHit(HashEntry<K, V> e) { accessQueue.add(e); return accessQueue.size() >= maxBatchQueueSize * batchThresholdFactor; } /* * Invoked without holding a lock on Segment */ //@Override public boolean thresholdExpired() { return accessQueue.size() >= maxBatchQueueSize; } //@Override public void onEntryRemove(HashEntry<K, V> e) { HashEntry<K, V> removed = stack.remove(e.hashCode()); if (removed != null && removed.recency() == Recency.LIR_RESIDENT) { currentLIRSize--; } queue.remove(e); // we could have multiple instances of e in accessQueue; remove them all while (accessQueue.remove(e)); } //@Override public void clear() { stack.clear(); accessQueue.clear(); } //@Override public Eviction strategy() { return Eviction.LIRS; } } /** * Segments are specialized versions of hash tables. This subclasses from ReentrantLock * opportunistically, just to simplify some locking and avoid separate construction. */ static final class Segment<K, V> extends ReentrantLock implements Serializable { /* * Segments maintain a table of entry lists that are ALWAYS kept in a consistent state, so * can be read without locking. Next fields of nodes are immutable (final). All list * additions are performed at the front of each bin. This makes it easy to check changes, * and also fast to traverse. When nodes would otherwise be changed, new nodes are created * to replace them. This works well for hash tables since the bin lists tend to be short. * (The average length is less than two for the default load factor threshold.) * * Read operations can thus proceed without locking, but rely on selected uses of volatiles * to ensure that completed write operations performed by other threads are noticed. For * most purposes, the "count" field, tracking the number of elements, serves as that * volatile variable ensuring visibility. This is convenient because this field needs to be * read in many read operations anyway: * * - All (unsynchronized) read operations must first read the "count" field, and should not * look at table entries if it is 0. * * - All (synchronized) write operations should write to the "count" field after * structurally changing any bin. The operations must not take any action that could even * momentarily cause a concurrent read operation to see inconsistent data. This is made * easier by the nature of the read operations in Map. For example, no operation can reveal * that the table has grown but the threshold has not yet been updated, so there are no * atomicity requirements for this with respect to reads. * * As a guide, all critical volatile reads and writes to the count field are marked in code * comments. */ private static final long serialVersionUID = 2249069246763182397L; /** * The number of elements in this segment's region. */ transient volatile int count; /** * Number of updates that alter the size of the table. This is used during bulk-read methods * to make sure they see a consistent snapshot: If modCounts change during a traversal of * segments computing size or checking containsValue, then we might have an inconsistent * view of state so (usually) must retry. */ transient int modCount; /** * The table is rehashed when its size exceeds this threshold. (The value of this field is * always <tt>(int)(capacity * * loadFactor)</tt>.) */ transient int threshold; /** * The per-segment table. */ transient volatile HashEntry<K, V>[] table; transient final EvictionPolicy<K, V> eviction; transient final EvictionListener<K, V> evictionListener; /** * The load factor for the hash table. Even though this value is same for all segments, it * is replicated to avoid needing links to outer object. * * @serial */ final float loadFactor; Segment(int cap, float lf, Eviction es, EvictionListener<K, V> listener) { loadFactor = lf; eviction = es.make(this, cap, lf); evictionListener = listener; setTable(HashEntry.<K, V> newArray(cap)); } @SuppressWarnings("unchecked") static <K, V> Segment<K, V>[] newArray(int i) { return new Segment[i]; } /** * Sets table to new HashEntry array. Call only while holding lock or in constructor. */ void setTable(HashEntry<K, V>[] newTable) { threshold = (int) (newTable.length * loadFactor); table = newTable; } /** * Returns properly casted first entry of bin for given hash. */ HashEntry<K, V> getFirst(int hash) { HashEntry<K, V>[] tab = table; return tab[hash & (tab.length - 1)]; } /** * Reads value field of an entry under lock. Called if value field ever appears to be null. * This is possible only if a compiler happens to reorder a HashEntry initialization with * its table assignment, which is legal under memory model but is not known to ever occur. */ V readValueUnderLock(HashEntry<K, V> e) { lock(); try { return e.value; } finally { unlock(); } } V get(Object key, int hash) { int c = count; if (c != 0) { // read-volatile V result = null; HashEntry<K, V> e = getFirst(hash); loop: while (e != null) { if (e.hash == hash && key.equals(e.key)) { V v = e.value; if (v != null) { result = v; break loop; } else { result = readValueUnderLock(e); // recheck break loop; } } e = e.next; } // a hit if (result != null) { if (eviction.onEntryHit(e)) { Set<HashEntry<K, V>> evicted = attemptEviction(false); // piggyback listener invocation on callers thread outside lock if (evicted != null) { for (HashEntry<K, V> he : evicted) { evictionListener.evicted(he.key, he.value); } } } } return result; } return null; } private Set<HashEntry<K, V>> attemptEviction(boolean lockedAlready) { Set<HashEntry<K, V>> evicted = null; boolean obtainedLock = !lockedAlready ? tryLock() : true; if (!obtainedLock && eviction.thresholdExpired()) { lock(); obtainedLock = true; } if (obtainedLock) { try { evicted = eviction.execute(); } finally { if (!lockedAlready) unlock(); } } return evicted; } boolean containsKey(Object key, int hash) { if (count != 0) { // read-volatile HashEntry<K, V> e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) return true; e = e.next; } } return false; } boolean containsValue(Object value) { if (count != 0) { // read-volatile HashEntry<K, V>[] tab = table; int len = tab.length; for (int i = 0; i < len; i++) { for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) { V v = e.value; if (v == null) // recheck v = readValueUnderLock(e); if (value.equals(v)) return true; } } } return false; } boolean replace(K key, int hash, V oldValue, V newValue) { lock(); Set<HashEntry<K, V>> evicted = null; try { HashEntry<K, V> e = getFirst(hash); while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; boolean replaced = false; if (e != null && oldValue.equals(e.value)) { replaced = true; e.value = newValue; if (eviction.onEntryHit(e)) { evicted = attemptEviction(true); } } return replaced; } finally { unlock(); // piggyback listener invocation on callers thread outside lock if (evicted != null) { for (HashEntry<K, V> he : evicted) { evictionListener.evicted(he.key, he.value); } } } } V replace(K key, int hash, V newValue) { lock(); Set<HashEntry<K, V>> evicted = null; try { HashEntry<K, V> e = getFirst(hash); while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue = null; if (e != null) { oldValue = e.value; e.value = newValue; if (eviction.onEntryHit(e)) { evicted = attemptEviction(true); } } return oldValue; } finally { unlock(); // piggyback listener invocation on callers thread outside lock if(evicted != null) { for (HashEntry<K, V> he : evicted) { evictionListener.evicted(he.key, he.value); } } } } V put(K key, int hash, V value, boolean onlyIfAbsent) { lock(); Set<HashEntry<K, V>> evicted = null; try { int c = count; if (c++ > threshold && eviction.strategy() == Eviction.NONE) // ensure capacity rehash(); HashEntry<K, V>[] tab = table; int index = hash & (tab.length - 1); HashEntry<K, V> first = tab[index]; HashEntry<K, V> e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue; if (e != null) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; eviction.onEntryHit(e); } } else { oldValue = null; ++modCount; count = c; // write-volatile if (eviction.strategy() != Eviction.NONE) { if (c > tab.length) { // remove entries;lower count evicted = eviction.execute(); // re-read first first = tab[index]; } // add a new entry tab[index] = new HashEntry<K, V>(key, hash, first, value); // notify a miss eviction.onEntryMiss(tab[index]); } else { tab[index] = new HashEntry<K, V>(key, hash, first, value); } } return oldValue; } finally { unlock(); // piggyback listener invocation on callers thread outside lock if(evicted != null) { for (HashEntry<K, V> he : evicted) { evictionListener.evicted(he.key, he.value); } } } } void rehash() { HashEntry<K, V>[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity >= MAXIMUM_CAPACITY) return; /* * Reclassify nodes in each list to new Map. Because we are using power-of-two * expansion, the elements from each bin must either stay at same index, or move with a * power of two offset. We eliminate unnecessary node creation by catching cases where * old nodes can be reused because their next fields won't change. Statistically, at the * default threshold, only about one-sixth of them need cloning when a table doubles. * The nodes they replace will be garbage collectable as soon as they are no longer * referenced by any reader thread that may be in the midst of traversing table right * now. */ HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1); threshold = (int) (newTable.length * loadFactor); int sizeMask = newTable.length - 1; for (int i = 0; i < oldCapacity; i++) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. HashEntry<K, V> e = oldTable[i]; if (e != null) { HashEntry<K, V> next = e.next; int idx = e.hash & sizeMask; // Single node on list if (next == null) newTable[idx] = e; else { // Reuse trailing consecutive sequence at same slot HashEntry<K, V> lastRun = e; int lastIdx = idx; for (HashEntry<K, V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone all remaining nodes for (HashEntry<K, V> p = e; p != lastRun; p = p.next) { int k = p.hash & sizeMask; HashEntry<K, V> n = newTable[k]; newTable[k] = new HashEntry<K, V>(p.key, p.hash, n, p.value); } } } } table = newTable; } /** * Remove; match on key only if value null, else match both. */ V remove(Object key, int hash, Object value) { lock(); try { int c = count - 1; HashEntry<K, V>[] tab = table; int index = hash & (tab.length - 1); HashEntry<K, V> first = tab[index]; HashEntry<K, V> e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue = null; if (e != null) { V v = e.value; if (value == null || value.equals(v)) { oldValue = v; // All entries following removed node can stay // in list, but all preceding ones need to be // cloned. ++modCount; // e was removed eviction.onEntryRemove(e); HashEntry<K, V> newFirst = e.next; for (HashEntry<K, V> p = first; p != e; p = p.next) { // allow p to be GC-ed eviction.onEntryRemove(p); newFirst = new HashEntry<K, V>(p.key, p.hash, newFirst, p.value); // and notify eviction algorithm about new hash entries eviction.onEntryMiss(newFirst); } tab[index] = newFirst; count = c; // write-volatile } } return oldValue; } finally { unlock(); } } void clear() { if (count != 0) { lock(); try { HashEntry<K, V>[] tab = table; for (int i = 0; i < tab.length; i++) tab[i] = null; ++modCount; eviction.clear(); count = 0; // write-volatile } finally { unlock(); } } } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified initial capacity, load factor and concurrency * level. * * @param initialCapacity * the initial capacity. The implementation performs internal sizing to accommodate * this many elements. * @param loadFactor * the load factor threshold, used to control resizing. Resizing may be performed * when the average number of elements per bin exceeds this threshold. * @param concurrencyLevel * the estimated number of concurrently updating threads. The implementation performs * internal sizing to try to accommodate this many threads. * * @param evictionStrategy * the algorithm used to evict elements from this map * * @param evictionListener * the evicton listener callback to be notified about evicted elements * * @throws IllegalArgumentException * if the initial capacity is negative or the load factor or concurrencyLevel are * nonpositive. */ public BufferedConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel, Eviction evictionStrategy, EvictionListener<K, V> evictionListener) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (evictionStrategy == null || evictionListener == null) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } segmentShift = 32 - sshift; segmentMask = ssize - 1; this.segments = Segment.newArray(ssize); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = 1; while (cap < c) cap <<= 1; for (int i = 0; i < this.segments.length; ++i) this.segments[i] = new Segment<K, V>(cap, loadFactor, evictionStrategy, evictionListener); } public BufferedConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { this(initialCapacity, loadFactor, concurrencyLevel, Eviction.LRU); } public BufferedConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel, Eviction evictionStrategy) { this(initialCapacity, loadFactor, concurrencyLevel, evictionStrategy, new NullEvictionListener<K, V>()); } /** * Creates a new, empty map with the specified initial capacity and load factor and with the * default concurrencyLevel (16). * * @param initialCapacity * The implementation performs internal sizing to accommodate this many elements. * @param loadFactor * the load factor threshold, used to control resizing. Resizing may be performed * when the average number of elements per bin exceeds this threshold. * @throws IllegalArgumentException * if the initial capacity of elements is negative or the load factor is nonpositive * * @since 1.6 */ public BufferedConcurrentHashMap(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new, empty map with the specified initial capacity, and with default load factor * (0.75) and concurrencyLevel (16). * * @param initialCapacity * the initial capacity. The implementation performs internal sizing to accommodate * this many elements. * @throws IllegalArgumentException * if the initial capacity of elements is negative. */ public BufferedConcurrentHashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new, empty map with a default initial capacity (16), load factor (0.75) and * concurrencyLevel (16). */ public BufferedConcurrentHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new map with the same mappings as the given map. The map is created with a capacity * of 1.5 times the number of mappings in the given map or 16 (whichever is greater), and a * default load factor (0.75) and concurrencyLevel (16). * * @param m * the map */ public BufferedConcurrentHashMap(Map<? extends K, ? extends V> m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); putAll(m); } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * * @return <tt>true</tt> if this map contains no key-value mappings */ public boolean isEmpty() { final Segment<K, V>[] segments = this.segments; /* * We keep track of per-segment modCounts to avoid ABA problems in which an element in one * segment was added and in another removed during traversal, in which case the table was * never actually empty at any point. Note the similar use of modCounts in the size() and * containsValue() methods, which are the only other methods also susceptible to ABA * problems. */ int[] mc = new int[segments.length]; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0) return false; else mcsum += mc[i] = segments[i].modCount; } // If mcsum happens to be zero, then we know we got a snapshot // before any modifications at all were made. This is // probably common enough to bother tracking. if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0 || mc[i] != segments[i].modCount) return false; } } return true; } /** * Returns the number of key-value mappings in this map. If the map contains more than * <tt>Integer.MAX_VALUE</tt> elements, returns <tt>Integer.MAX_VALUE</tt>. * * @return the number of key-value mappings in this map */ public int size() { final Segment<K, V>[] segments = this.segments; long sum = 0; long check = 0; int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { check = 0; sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; mcsum += mc[i] = segments[i].modCount; } if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { check += segments[i].count; if (mc[i] != segments[i].modCount) { check = -1; // force retry break; } } } if (check == sum) break; } if (true) { // Resort to locking all segments sum = 0; for (int i = 0; i < segments.length; ++i) segments[i].lock(); for (int i = 0; i < segments.length; ++i) sum += segments[i].count; for (int i = 0; i < segments.length; ++i) segments[i].unlock(); } if (sum > Integer.MAX_VALUE) return Integer.MAX_VALUE; else return (int) sum; } /** * Returns the value to which the specified key is mapped, or {@code null} if this map contains * no mapping for the key. * * <p> * More formally, if this map contains a mapping from a key {@code k} to a value {@code v} such * that {@code key.equals(k)}, then this method returns {@code v}; otherwise it returns {@code * null}. (There can be at most one such mapping.) * * @throws NullPointerException * if the specified key is null */ public V get(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).get(key, hash); } /** * Tests if the specified object is a key in this table. * * @param key * possible key * @return <tt>true</tt> if and only if the specified object is a key in this table, as * determined by the <tt>equals</tt> method; <tt>false</tt> otherwise. * @throws NullPointerException * if the specified key is null */ public boolean containsKey(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).containsKey(key, hash); } /** * Returns <tt>true</tt> if this map maps one or more keys to the specified value. Note: This * method requires a full internal traversal of the hash table, and so is much slower than * method <tt>containsKey</tt>. * * @param value * value whose presence in this map is to be tested * @return <tt>true</tt> if this map maps one or more keys to the specified value * @throws NullPointerException * if the specified value is null */ public boolean containsValue(Object value) { if (value == null) throw new NullPointerException(); // See explanation of modCount use above final Segment<K, V>[] segments = this.segments; int[] mc = new int[segments.length]; // Try a few times without locking for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { int sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { int c = segments[i].count; mcsum += mc[i] = segments[i].modCount; if (segments[i].containsValue(value)) return true; } boolean cleanSweep = true; if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { int c = segments[i].count; if (mc[i] != segments[i].modCount) { cleanSweep = false; break; } } } if (cleanSweep) return false; } // Resort to locking all segments for (int i = 0; i < segments.length; ++i) segments[i].lock(); boolean found = false; try { for (int i = 0; i < segments.length; ++i) { if (segments[i].containsValue(value)) { found = true; break; } } } finally { for (int i = 0; i < segments.length; ++i) segments[i].unlock(); } return found; } /** * Legacy method testing if some key maps into the specified value in this table. This method is * identical in functionality to {@link #containsValue}, and exists solely to ensure full * compatibility with class {@link java.util.Hashtable}, which supported this method prior to * introduction of the Java Collections framework. * * @param value * a value to search for * @return <tt>true</tt> if and only if some key maps to the <tt>value</tt> argument in this * table as determined by the <tt>equals</tt> method; <tt>false</tt> otherwise * @throws NullPointerException * if the specified value is null */ public boolean contains(Object value) { return containsValue(value); } /** * Maps the specified key to the specified value in this table. Neither the key nor the value * can be null. * * <p> * The value can be retrieved by calling the <tt>get</tt> method with a key that is equal to the * original key. * * @param key * key with which the specified value is to be associated * @param value * value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or <tt>null</tt> if there was no * mapping for <tt>key</tt> * @throws NullPointerException * if the specified key or value is null */ public V put(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).put(key, hash, value, false); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or <tt>null</tt> if there was * no mapping for the key * @throws NullPointerException * if the specified key or value is null */ public V putIfAbsent(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).put(key, hash, value, true); } /** * Copies all of the mappings from the specified map to this one. These mappings replace any * mappings that this map had for any of the keys currently in the specified map. * * @param m * mappings to be stored in this map */ public void putAll(Map<? extends K, ? extends V> m) { for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) put(e.getKey(), e.getValue()); } /** * Removes the key (and its corresponding value) from this map. This method does nothing if the * key is not in the map. * * @param key * the key that needs to be removed * @return the previous value associated with <tt>key</tt>, or <tt>null</tt> if there was no * mapping for <tt>key</tt> * @throws NullPointerException * if the specified key is null */ public V remove(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).remove(key, hash, null); } /** * {@inheritDoc} * * @throws NullPointerException * if the specified key is null */ public boolean remove(Object key, Object value) { int hash = hash(key.hashCode()); if (value == null) return false; return segmentFor(hash).remove(key, hash, value) != null; } /** * {@inheritDoc} * * @throws NullPointerException * if any of the arguments are null */ public boolean replace(K key, V oldValue, V newValue) { if (oldValue == null || newValue == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replace(key, hash, oldValue, newValue); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or <tt>null</tt> if there was * no mapping for the key * @throws NullPointerException * if the specified key or value is null */ public V replace(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replace(key, hash, value); } /** * Removes all of the mappings from this map. */ public void clear() { for (int i = 0; i < segments.length; ++i) segments[i].clear(); } /** * Returns a {@link Set} view of the keys contained in this map. The set is backed by the map, * so changes to the map are reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from this map, via the * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and * <tt>clear</tt> operations. It does not support the <tt>add</tt> or <tt>addAll</tt> * operations. * * <p> * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will never throw * {@link ConcurrentModificationException}, and guarantees to traverse elements as they existed * upon construction of the iterator, and may (but is not guaranteed to) reflect any * modifications subsequent to construction. */ public Set<K> keySet() { Set<K> ks = keySet; return (ks != null) ? ks : (keySet = new KeySet()); } /** * Returns a {@link Collection} view of the values contained in this map. The collection is * backed by the map, so changes to the map are reflected in the collection, and vice-versa. The * collection supports element removal, which removes the corresponding mapping from this map, * via the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, <tt>removeAll</tt>, * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * <p> * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will never throw * {@link ConcurrentModificationException}, and guarantees to traverse elements as they existed * upon construction of the iterator, and may (but is not guaranteed to) reflect any * modifications subsequent to construction. */ public Collection<V> values() { Collection<V> vs = values; return (vs != null) ? vs : (values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. The set is backed by the * map, so changes to the map are reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, via the * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and * <tt>clear</tt> operations. It does not support the <tt>add</tt> or <tt>addAll</tt> * operations. * * <p> * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will never throw * {@link ConcurrentModificationException}, and guarantees to traverse elements as they existed * upon construction of the iterator, and may (but is not guaranteed to) reflect any * modifications subsequent to construction. */ public Set<Map.Entry<K, V>> entrySet() { Set<Map.Entry<K, V>> es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * @see #keySet() */ public Enumeration<K> keys() { return new KeyIterator(); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * @see #values() */ public Enumeration<V> elements() { return new ValueIterator(); } /* ---------------- Iterator Support -------------- */ abstract class HashIterator { int nextSegmentIndex; int nextTableIndex; HashEntry<K, V>[] currentTable; HashEntry<K, V> nextEntry; HashEntry<K, V> lastReturned; HashIterator() { nextSegmentIndex = segments.length - 1; nextTableIndex = -1; advance(); } public boolean hasMoreElements() { return hasNext(); } final void advance() { if (nextEntry != null && (nextEntry = nextEntry.next) != null) return; while (nextTableIndex >= 0) { if ((nextEntry = currentTable[nextTableIndex--]) != null) return; } while (nextSegmentIndex >= 0) { Segment<K, V> seg = segments[nextSegmentIndex--]; if (seg.count != 0) { currentTable = seg.table; for (int j = currentTable.length - 1; j >= 0; --j) { if ((nextEntry = currentTable[j]) != null) { nextTableIndex = j - 1; return; } } } } } public boolean hasNext() { return nextEntry != null; } HashEntry<K, V> nextEntry() { if (nextEntry == null) throw new NoSuchElementException(); lastReturned = nextEntry; advance(); return lastReturned; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); BufferedConcurrentHashMap.this.remove(lastReturned.key); lastReturned = null; } } final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> { public K next() { return super.nextEntry().key; } public K nextElement() { return super.nextEntry().key; } } final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> { public V next() { return super.nextEntry().value; } public V nextElement() { return super.nextEntry().value; } } /** * Custom Entry class used by EntryIterator.next(), that relays setValue changes to the * underlying map. */ final class WriteThroughEntry extends AbstractMap.SimpleEntry<K, V> { private static final long serialVersionUID = -1075078642155041669L; WriteThroughEntry(K k, V v) { super(k, v); } /** * Set our entry's value and write through to the map. The value to return is somewhat * arbitrary here. Since a WriteThroughEntry does not necessarily track asynchronous * changes, the most recent "previous" value could be different from what we return (or * could even have been removed in which case the put will re-establish). We do not and * cannot guarantee more. */ public V setValue(V value) { if (value == null) throw new NullPointerException(); V v = super.setValue(value); BufferedConcurrentHashMap.this.put(getKey(), value); return v; } } final class EntryIterator extends HashIterator implements Iterator<Entry<K, V>> { public Map.Entry<K, V> next() { HashEntry<K, V> e = super.nextEntry(); return new WriteThroughEntry(e.key, e.value); } } final class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return new KeyIterator(); } public int size() { return BufferedConcurrentHashMap.this.size(); } public boolean contains(Object o) { return BufferedConcurrentHashMap.this.containsKey(o); } public boolean remove(Object o) { return BufferedConcurrentHashMap.this.remove(o) != null; } public void clear() { BufferedConcurrentHashMap.this.clear(); } } final class Values extends AbstractCollection<V> { public Iterator<V> iterator() { return new ValueIterator(); } public int size() { return BufferedConcurrentHashMap.this.size(); } public boolean contains(Object o) { return BufferedConcurrentHashMap.this.containsValue(o); } public void clear() { BufferedConcurrentHashMap.this.clear(); } } final class EntrySet extends AbstractSet<Map.Entry<K, V>> { public Iterator<Map.Entry<K, V>> iterator() { return new EntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; V v = BufferedConcurrentHashMap.this.get(e.getKey()); return v != null && v.equals(e.getValue()); } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; return BufferedConcurrentHashMap.this.remove(e.getKey(), e.getValue()); } public int size() { return BufferedConcurrentHashMap.this.size(); } public void clear() { BufferedConcurrentHashMap.this.clear(); } } /* ---------------- Serialization Support -------------- */ /** * Save the state of the <tt>ConcurrentHashMap</tt> instance to a stream (i.e., serialize it). * * @param s * the stream * @serialData the key (Object) and value (Object) for each key-value mapping, followed by a * null pair. The key-value mappings are emitted in no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { s.defaultWriteObject(); for (int k = 0; k < segments.length; ++k) { Segment<K, V> seg = segments[k]; seg.lock(); try { HashEntry<K, V>[] tab = seg.table; for (int i = 0; i < tab.length; ++i) { for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) { s.writeObject(e.key); s.writeObject(e.value); } } } finally { seg.unlock(); } } s.writeObject(null); s.writeObject(null); } /** * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a stream (i.e., deserialize it). * * @param s * the stream */ private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { s.defaultReadObject(); // Initialize each segment to be minimally sized, and let grow. for (int i = 0; i < segments.length; ++i) { segments[i].setTable(new HashEntry[1]); } // Read the keys and values, and put the mappings in the table for (;;) { K key = (K) s.readObject(); V value = (V) s.readObject(); if (key == null) break; put(key, value); } } }