/** Copyright (C) SYSTAP, LLC DBA Blazegraph 2006-2016. All rights reserved. Contact: SYSTAP, LLC DBA Blazegraph 2501 Calvert ST NW #106 Washington, DC 20008 licenses@blazegraph.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ package com.bigdata.btree; import java.io.File; import java.io.IOException; import org.apache.log4j.Level; import com.bigdata.btree.IndexSegment.ImmutableLeafCursor; import com.bigdata.btree.IndexSegment.ImmutableNodeFactory.ImmutableLeaf; import com.bigdata.btree.keys.TestKeyBuilder; /** * Test suite based on a small btree with known keys and values. * * @see src/architecture/btree.xls, which has the detailed examples. */ public class TestIndexSegmentBuilderWithSmallTree extends AbstractIndexSegmentTestCase { public TestIndexSegmentBuilderWithSmallTree() { } public TestIndexSegmentBuilderWithSmallTree(String name) { super(name); } private File outFile; private File tmpDir; private boolean bufferNodes; public void setUp() throws Exception { super.setUp(); // random choice. bufferNodes = r.nextBoolean(); outFile = new File(getName() + ".seg"); if (outFile.exists() && !outFile.delete()) { throw new RuntimeException("Could not delete file: " + outFile); } tmpDir = outFile.getAbsoluteFile().getParentFile(); } public void tearDown() throws Exception { if (outFile != null && outFile.exists() && !outFile.delete()) { log.warn("Could not delete file: " + outFile); } super.tearDown(); // clear references. outFile = null; tmpDir = null; } /* * problem1 */ /** * Create, populate, and return a btree with a branching factor of (3) and * ten sequential keys [1:10]. The values are {@link SimpleEntry} objects * whose state is the same as the corresponding key. * * @return The btree. * * @see src/architecture/btree.xls, which details this input tree and a * series of output trees with various branching factors. */ public BTree getProblem1() { final BTree btree = getBTree(3); for (int i = 1; i <= 10; i++) { btree.insert(TestKeyBuilder.asSortKey(i), new SimpleEntry(i)); } return btree; } /** * Test ability to build an index segment from a {@link BTree}. */ public void test_buildOrder3() throws Exception { final BTree btree = getProblem1(); final IndexSegmentCheckpoint checkpoint = doBuildAndDiscardCache(btree, 3/*m*/); // final long commitTime = System.currentTimeMillis(); // // IndexSegmentBuilder.newInstance(outFile, tmpDir, btree.getEntryCount(), btree // .rangeIterator(), 3/* m */, btree.getIndexMetadata(), commitTime, // true/*compactingMerge*/, bufferNodes).call(); /* * Verify can load the index file and that the metadata * associated with the index file is correct (we are only * checking those aspects that are easily defined by the test * case and not, for example, those aspects that depend on the * specifics of the length of serialized nodes or leaves). */ final IndexSegmentStore segStore = new IndexSegmentStore(outFile); assertEquals(checkpoint.commitTime,segStore.getCheckpoint().commitTime); assertEquals(2,segStore.getCheckpoint().height); assertEquals(4,segStore.getCheckpoint().nleaves); assertEquals(3,segStore.getCheckpoint().nnodes); assertEquals(10,segStore.getCheckpoint().nentries); final IndexSegment seg = segStore.loadIndexSegment(); try { assertEquals(3,seg.getBranchingFactor()); assertEquals(2,seg.getHeight()); assertEquals(4,seg.getLeafCount()); assertEquals(3,seg.getNodeCount()); assertEquals(10,seg.getEntryCount()); testForwardScan(seg); testReverseScan(seg); // test index segment structure. dumpIndexSegment(seg); /* * Test the tree in detail. */ { final Node C = (Node)seg.getRoot(); final Node A = (Node)C.getChild(0); final Node B = (Node)C.getChild(1); final Leaf a = (Leaf)A.getChild(0); final Leaf b = (Leaf)A.getChild(1); final Leaf c = (Leaf)B.getChild(0); final Leaf d = (Leaf)B.getChild(1); assertKeys(new int[]{7},C); assertEntryCounts(new int[]{6,4},C); assertKeys(new int[]{4},A); assertEntryCounts(new int[]{3,3},A); assertKeys(new int[]{9},B); assertEntryCounts(new int[]{2,2},B); assertKeys(new int[]{1,2,3},a); assertKeys(new int[]{4,5,6},b); assertKeys(new int[]{7,8},c); assertKeys(new int[]{9,10},d); // Note: values are verified by testing the total order. } /* * Verify the total index order. */ assertSameBTree(btree, seg); } finally { // close so we can delete the backing store. seg.close(); } } /** * This case results in a root node and two leaves. Each leaf is at its * minimum capacity (5). This tests an edge case for the algorithm that * distributes the keys among the leaves when there would otherwise be * an underflow in the last leaf. * * @throws IOException */ public void test_buildOrder9() throws Exception { final BTree btree = getProblem1(); doBuildAndDiscardCache(btree, 9/*m*/); // final long commitTime = System.currentTimeMillis(); // // IndexSegmentBuilder.newInstance(outFile, tmpDir, btree.getEntryCount(), btree // .rangeIterator(), 9/* m */, btree.getIndexMetadata(), commitTime, // true/*compactingMerge*/,bufferNodes).call(); /* * Verify that we can load the index file and that the metadata * associated with the index file is correct (we are only checking those * aspects that are easily defined by the test case and not, for * example, those aspects that depend on the specifics of the length of * serialized nodes or leaves). */ final IndexSegmentStore segStore = new IndexSegmentStore(outFile); assertEquals("#nodes",1,segStore.getCheckpoint().nnodes); assertEquals("#leaves",2,segStore.getCheckpoint().nleaves); assertEquals("#entries",10,segStore.getCheckpoint().nentries); assertEquals("height",1,segStore.getCheckpoint().height); assertNotSame(segStore.getCheckpoint().addrRoot,segStore.getCheckpoint().addrFirstLeaf); assertNotSame(segStore.getCheckpoint().addrFirstLeaf,segStore.getCheckpoint().addrLastLeaf); final IndexSegment seg = segStore.loadIndexSegment(); try { assertEquals(9, seg.getBranchingFactor()); assertEquals(1, seg.getHeight()); assertEquals(2, seg.getLeafCount()); assertEquals(1, seg.getNodeCount()); assertEquals(10, seg.getEntryCount()); final ImmutableLeaf firstLeaf = seg .readLeaf(segStore.getCheckpoint().addrFirstLeaf); assertEquals("priorAddr", 0L, firstLeaf.getPriorAddr()); assertEquals("nextAddr", segStore.getCheckpoint().addrLastLeaf, firstLeaf.getNextAddr()); final ImmutableLeaf lastLeaf = seg .readLeaf(segStore.getCheckpoint().addrLastLeaf); assertEquals("priorAddr", segStore.getCheckpoint().addrFirstLeaf, lastLeaf.getPriorAddr()); assertEquals("nextAddr", 0L, lastLeaf.getNextAddr()); // test forward scan { final ImmutableLeafCursor itr = seg.newLeafCursor(SeekEnum.First); // if(LRUNexus.INSTANCE!=null) // assertTrue(firstLeaf.getDelegate() == itr.leaf().getDelegate()); // Note: test depends on cache! assertNull(itr.prior()); // if(LRUNexus.INSTANCE!=null) // assertTrue(lastLeaf.getDelegate() == itr.next().getDelegate()); // Note: test depends on cache! // if(LRUNexus.INSTANCE!=null) // assertTrue(lastLeaf.getDelegate() == itr.leaf().getDelegate()); // Note: test depends on cache! } /* * test reverse scan * * Note: the scan starts with the last leaf in the key order and then * proceeds in reverse key order. */ { final ImmutableLeafCursor itr = seg.newLeafCursor(SeekEnum.Last); // if(LRUNexus.INSTANCE!=null) // assertTrue(lastLeaf.getDelegate() == itr.leaf().getDelegate()); // Note: test depends on cache! assertNull(itr.next()); // if(LRUNexus.INSTANCE!=null) // assertTrue(firstLeaf.getDelegate() == itr.prior().getDelegate()); // Note: test depends on cache! // if(LRUNexus.INSTANCE!=null) // assertTrue(firstLeaf.getDelegate() == itr.leaf().getDelegate()); // Note: test depends on cache! } // test index segment structure. dumpIndexSegment(seg); /* * Test the tree in detail. */ { final Node A = (Node)seg.getRoot(); final Leaf a = (Leaf)A.getChild(0); final Leaf b = (Leaf)A.getChild(1); assertKeys(new int[]{6},A); assertEntryCounts(new int[]{5,5},A); assertKeys(new int[]{1,2,3,4,5},a); assertKeys(new int[]{6,7,8,9,10},b); // Note: values are verified by testing the total order. } /* * Verify the total index order. */ assertSameBTree(btree, seg); } finally { // close so we can delete the backing store. seg.close(); } } /** * This case results in a single root leaf filled to capacity. * * @throws IOException */ public void test_buildOrder10() throws Exception { final BTree btree = getProblem1(); doBuildAndDiscardCache(btree, 10/* m */); /* * Verify that we can load the index file and that the metadata * associated with the index file is correct (we are only checking those * aspects that are easily defined by the test case and not, for * example, those aspects that depend on the specifics of the length of * serialized nodes or leaves). */ final IndexSegmentStore segStore = new IndexSegmentStore(outFile); assertEquals("#nodes",0,segStore.getCheckpoint().nnodes); assertEquals("#leaves",1,segStore.getCheckpoint().nleaves); assertEquals("#entries",10,segStore.getCheckpoint().nentries); assertEquals("height",0,segStore.getCheckpoint().height); assertEquals(segStore.getCheckpoint().addrRoot,segStore.getCheckpoint().addrFirstLeaf); assertEquals(segStore.getCheckpoint().addrFirstLeaf,segStore.getCheckpoint().addrLastLeaf); final IndexSegment seg = segStore.loadIndexSegment(); try { assertEquals(10,seg.getBranchingFactor()); assertEquals(0,seg.getHeight()); assertEquals(1,seg.getLeafCount()); assertEquals(0,seg.getNodeCount()); assertEquals(10,seg.getEntryCount()); final ImmutableLeaf leaf = seg.readLeaf(segStore.getCheckpoint().addrRoot); assertEquals("priorAddr", 0L, leaf.getPriorAddr()); assertEquals("nextAddr", 0L, leaf.getNextAddr()); final ImmutableLeafCursor itr = seg.newLeafCursor(SeekEnum.First); // if(LRUNexus.INSTANCE!=null) // assertTrue(leaf.getDelegate() == itr.leaf().getDelegate()); // Note: test depends on cache. assertNull(itr.prior()); assertNull(itr.next()); // test index segment structure. dumpIndexSegment(seg); /* * verify the right keys in the right leaves. */ { Leaf root = (Leaf)seg.getRoot(); assertKeys(new int[]{1,2,3,4,5,6,7,8,9,10},root); } /* * Verify the total index order. */ assertSameBTree(btree, seg); } finally { // close so we can delete the backing store. seg.close(); } } /* * Examples based on an input tree with 9 entries. */ /** * Create, populate, and return a btree with a branching factor of (3) and * nine sequential keys [1:9]. The values are {@link SimpleEntry} objects * whose state is the same as the corresponding key. * * @return The btree. * * @see src/architecture/btree.xls, which details this input tree and a * series of output trees with various branching factors. */ public BTree getProblem2() { final BTree btree = getBTree(3); for (int i = 1; i <= 9; i++) { btree.insert(TestKeyBuilder.asSortKey(i), new SimpleEntry(i)); } return btree; } /** * This case results in a single root leaf filled to capacity. * * @throws IOException */ public void test_problem2_buildOrder3() throws Exception { final BTree btree = getProblem2(); btree.dump(Level.DEBUG,System.err); doBuildAndDiscardCache(btree, 3/* m */); // final long commitTime = System.currentTimeMillis(); // // IndexSegmentBuilder.newInstance(outFile, tmpDir, btree.getEntryCount(), btree // .rangeIterator(), 3/* m */, btree.getIndexMetadata(), commitTime, // true/*compactingMerge*/,bufferNodes).call(); /* * Verify can load the index file and that the metadata * associated with the index file is correct (we are only * checking those aspects that are easily defined by the test * case and not, for example, those aspects that depend on the * specifics of the length of serialized nodes or leaves). */ final IndexSegment seg = new IndexSegmentStore(outFile).loadIndexSegment(); try { assertEquals(3,seg.getBranchingFactor()); assertEquals(1,seg.getHeight()); assertEquals(3,seg.getLeafCount()); assertEquals(1,seg.getNodeCount()); assertEquals(9,seg.getEntryCount()); // test index segment structure. dumpIndexSegment(seg); /* * Test the tree in detail. */ { final Node A = (Node)seg.getRoot(); final Leaf a = (Leaf)A.getChild(0); final Leaf b = (Leaf)A.getChild(1); final Leaf c = (Leaf)A.getChild(2); assertKeys(new int[]{4,7},A); assertEntryCounts(new int[]{3,3,3},A); assertKeys(new int[]{1,2,3},a); assertKeys(new int[]{4,5,6},b); assertKeys(new int[]{7,8,9},c); // Note: values are verified by testing the total order. } /* * Verify the total index order. */ assertSameBTree(btree, seg); } finally { // close so we can delete the backing store. seg.close(); } } /* * problem3 */ /** * Create, populate, and return a btree with a branching factor of (3) and * 20 sequential keys [1:20]. The resulting tree has a height of (3). The * values are {@link SimpleEntry} objects whose state is the same as the * corresponding key. * * @return The btree. * * @see src/architecture/btree.xls, which details this input tree and a * series of output trees with various branching factors. */ public BTree getProblem3() { final BTree btree = getBTree(3); for (int i = 1; i <= 20; i++) { btree.insert(TestKeyBuilder.asSortKey(i), new SimpleEntry(i)); } return btree; } /** * Note: This problem requires us to short a node in the level above the * leaves so that the last node in that level does not underflow. * * @throws IOException */ public void test_problem3_buildOrder3() throws Exception { final BTree btree = getProblem3(); btree.dump(Level.DEBUG,System.err); doBuildAndDiscardCache(btree, 3/*m*/); // final long commitTime = System.currentTimeMillis(); // // IndexSegmentBuilder.newInstance(outFile, tmpDir, btree.getEntryCount(), btree // .rangeIterator(), 3/* m */, btree.getIndexMetadata(), commitTime, // true/*compactingMerge*/,bufferNodes).call(); /* * Verify can load the index file and that the metadata * associated with the index file is correct (we are only * checking those aspects that are easily defined by the test * case and not, for example, those aspects that depend on the * specifics of the length of serialized nodes or leaves). */ final IndexSegment seg = new IndexSegmentStore(outFile).loadIndexSegment(); try { assertEquals(3,seg.getBranchingFactor()); assertEquals(2,seg.getHeight()); assertEquals(7,seg.getLeafCount()); assertEquals(4,seg.getNodeCount()); assertEquals(20,seg.getEntryCount()); // test index segment structure. dumpIndexSegment(seg); /* * Test the tree in detail. */ { final Node D = (Node)seg.getRoot(); final Node A = (Node)D.getChild(0); final Node B = (Node)D.getChild(1); final Node C = (Node)D.getChild(2); final Leaf a = (Leaf)A.getChild(0); final Leaf b = (Leaf)A.getChild(1); final Leaf c = (Leaf)A.getChild(2); final Leaf d = (Leaf)B.getChild(0); final Leaf e = (Leaf)B.getChild(1); final Leaf f = (Leaf)C.getChild(0); final Leaf g = (Leaf)C.getChild(1); assertKeys(new int[]{10,16},D); assertEntryCounts(new int[]{9,6,5},D); assertKeys(new int[]{4,7},A); assertEntryCounts(new int[]{3,3,3},A); assertKeys(new int[]{13},B); assertEntryCounts(new int[]{3,3},B); assertKeys(new int[]{19},C); assertEntryCounts(new int[]{3,2},C); assertKeys(new int[]{1,2,3},a); assertKeys(new int[]{4,5,6},b); assertKeys(new int[]{7,8,9},c); assertKeys(new int[]{10,11,12},d); assertKeys(new int[]{13,14,15},e); assertKeys(new int[]{16,17,18},f); assertKeys(new int[]{19,20},g); // Note: values are verified by testing the total order. } /* * Verify the total index order. */ assertSameBTree(btree, seg); } finally { // close so we can delete the backing store. seg.close(); } } protected IndexSegmentCheckpoint doBuildAndDiscardCache(final BTree btree, final int m) throws IOException, Exception { final long commitTime = System.currentTimeMillis(); final IndexSegmentCheckpoint checkpoint = IndexSegmentBuilder .newInstance(outFile, tmpDir, btree.getEntryCount(), btree.rangeIterator(), m, btree.getIndexMetadata(), commitTime, true/* compactingMerge */, bufferNodes) .call(); // @see BLZG-1501 (remove LRUNexus) // if (LRUNexus.INSTANCE != null) { // // /* // * Clear the records for the index segment from the cache so we will // * read directly from the file. This is necessary to ensure that the // * data on the file is good rather than just the data in the cache. // */ // // LRUNexus.INSTANCE.deleteCache(checkpoint.segmentUUID); // // } return checkpoint; } }