package com.esotericsoftware.kryonet.util; import com.esotericsoftware.kryo.util.ObjectMap; import java.util.Random; /** * An unordered map where the values are ints. This implementation is a cuckoo * hash map using 3 hashes, random walking, and a small stash for problematic * keys. Null keys are not allowed. No allocation is done except when growing * the table size. <br> * <br> * This map performs very fast get, containsKey, and remove (typically O(1), * worst case O(log(n))). Put may be a bit slower, depending on hash collisions. * Load factors greater than 0.91 greatly increase the chances the map will have * to rehash to the next higher POT size. * * @author Nathan Sweet */ public class ObjectIntMap<K> { @SuppressWarnings("unused") private static final int PRIME1 = 0xbe1f14b1; private static final int PRIME2 = 0xb4b82e39; private static final int PRIME3 = 0xced1c241; static Random random = new Random(); public int size; K[] keyTable; int[] valueTable; int capacity, stashSize; private float loadFactor; private int hashShift, mask, threshold; private int stashCapacity; private int pushIterations; /** * Creates a new map with an initial capacity of 32 and a load factor of * 0.8. This map will hold 25 items before growing the backing table. */ public ObjectIntMap() { this(32, 0.8f); } /** * Creates a new map with a load factor of 0.8. This map will hold * initialCapacity * 0.8 items before growing the backing table. */ public ObjectIntMap(int initialCapacity) { this(initialCapacity, 0.8f); } /** * Creates a new map with the specified initial capacity and load factor. * This map will hold initialCapacity * loadFactor items before growing the * backing table. */ @SuppressWarnings("unchecked") public ObjectIntMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity); if (initialCapacity > 1 << 30) throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity); capacity = ObjectMap.nextPowerOfTwo(initialCapacity); if (loadFactor <= 0) throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor); this.loadFactor = loadFactor; threshold = (int) (capacity * loadFactor); mask = capacity - 1; hashShift = 31 - Integer.numberOfTrailingZeros(capacity); stashCapacity = Math.max(3, (int) Math.ceil(Math.log(capacity)) * 2); pushIterations = Math.max(Math.min(capacity, 8), (int) Math.sqrt(capacity) / 8); keyTable = (K[]) new Object[capacity + stashCapacity]; valueTable = new int[keyTable.length]; } /** Creates a new map identical to the specified map. */ public ObjectIntMap(ObjectIntMap<? extends K> map) { this(map.capacity, map.loadFactor); stashSize = map.stashSize; System.arraycopy(map.keyTable, 0, keyTable, 0, map.keyTable.length); System.arraycopy(map.valueTable, 0, valueTable, 0, map.valueTable.length); size = map.size; } public void put(K key, int value) { if (key == null) throw new IllegalArgumentException("key cannot be null."); K[] keyTable = this.keyTable; // Check for existing keys. int hashCode = key.hashCode(); int index1 = hashCode & mask; K key1 = keyTable[index1]; if (key.equals(key1)) { valueTable[index1] = value; return; } int index2 = hash2(hashCode); K key2 = keyTable[index2]; if (key.equals(key2)) { valueTable[index2] = value; return; } int index3 = hash3(hashCode); K key3 = keyTable[index3]; if (key.equals(key3)) { valueTable[index3] = value; return; } // Update key in the stash. for (int i = capacity, n = i + stashSize; i < n; i++) { if (key.equals(keyTable[i])) { valueTable[i] = value; return; } } // Check for empty buckets. if (key1 == null) { keyTable[index1] = key; valueTable[index1] = value; if (size++ >= threshold) resize(capacity << 1); return; } if (key2 == null) { keyTable[index2] = key; valueTable[index2] = value; if (size++ >= threshold) resize(capacity << 1); return; } if (key3 == null) { keyTable[index3] = key; valueTable[index3] = value; if (size++ >= threshold) resize(capacity << 1); return; } push(key, value, index1, key1, index2, key2, index3, key3); } /** Skips checks for existing keys. */ private void putResize(K key, int value) { // Check for empty buckets. int hashCode = key.hashCode(); int index1 = hashCode & mask; K key1 = keyTable[index1]; if (key1 == null) { keyTable[index1] = key; valueTable[index1] = value; if (size++ >= threshold) resize(capacity << 1); return; } int index2 = hash2(hashCode); K key2 = keyTable[index2]; if (key2 == null) { keyTable[index2] = key; valueTable[index2] = value; if (size++ >= threshold) resize(capacity << 1); return; } int index3 = hash3(hashCode); K key3 = keyTable[index3]; if (key3 == null) { keyTable[index3] = key; valueTable[index3] = value; if (size++ >= threshold) resize(capacity << 1); return; } push(key, value, index1, key1, index2, key2, index3, key3); } private void push(K insertKey, int insertValue, int index1, K key1, int index2, K key2, int index3, K key3) { K[] keyTable = this.keyTable; int[] valueTable = this.valueTable; int mask = this.mask; // Push keys until an empty bucket is found. K evictedKey; int evictedValue; int i = 0, pushIterations = this.pushIterations; do { // Replace the key and value for one of the hashes. switch (random.nextInt(3)) { case 0: evictedKey = key1; evictedValue = valueTable[index1]; keyTable[index1] = insertKey; valueTable[index1] = insertValue; break; case 1: evictedKey = key2; evictedValue = valueTable[index2]; keyTable[index2] = insertKey; valueTable[index2] = insertValue; break; default: evictedKey = key3; evictedValue = valueTable[index3]; keyTable[index3] = insertKey; valueTable[index3] = insertValue; break; } // If the evicted key hashes to an empty bucket, put it there and // stop. int hashCode = evictedKey.hashCode(); index1 = hashCode & mask; key1 = keyTable[index1]; if (key1 == null) { keyTable[index1] = evictedKey; valueTable[index1] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } index2 = hash2(hashCode); key2 = keyTable[index2]; if (key2 == null) { keyTable[index2] = evictedKey; valueTable[index2] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } index3 = hash3(hashCode); key3 = keyTable[index3]; if (key3 == null) { keyTable[index3] = evictedKey; valueTable[index3] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } if (++i == pushIterations) break; insertKey = evictedKey; insertValue = evictedValue; } while (true); putStash(evictedKey, evictedValue); } private void putStash(K key, int value) { if (stashSize == stashCapacity) { // Too many pushes occurred and the stash is full, increase the // table size. resize(capacity << 1); put(key, value); return; } // Store key in the stash. int index = capacity + stashSize; keyTable[index] = key; valueTable[index] = value; stashSize++; size++; } /** * @param defaultValue * Returned if the key was not associated with a value. */ public int get(K key, int defaultValue) { int hashCode = key.hashCode(); int index = hashCode & mask; if (!key.equals(keyTable[index])) { index = hash2(hashCode); if (!key.equals(keyTable[index])) { index = hash3(hashCode); if (!key.equals(keyTable[index])) return getStash(key, defaultValue); } } return valueTable[index]; } private int getStash(K key, int defaultValue) { K[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (key.equals(keyTable[i])) return valueTable[i]; return defaultValue; } /** * Returns the key's current value and increments the stored value. If the * key is not in the map, defaultValue + increment is put into the map. */ public int getAndIncrement(K key, int defaultValue, int increment) { int hashCode = key.hashCode(); int index = hashCode & mask; if (!key.equals(keyTable[index])) { index = hash2(hashCode); if (!key.equals(keyTable[index])) { index = hash3(hashCode); if (!key.equals(keyTable[index])) return getAndIncrementStash(key, defaultValue, increment); } } int value = valueTable[index]; valueTable[index] = value + increment; return value; } private int getAndIncrementStash(K key, int defaultValue, int increment) { K[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (key.equals(keyTable[i])) { int value = valueTable[i]; valueTable[i] = value + increment; return value; } put(key, defaultValue + increment); return defaultValue; } public int remove(K key, int defaultValue) { int hashCode = key.hashCode(); int index = hashCode & mask; if (key.equals(keyTable[index])) { keyTable[index] = null; int oldValue = valueTable[index]; size--; return oldValue; } index = hash2(hashCode); if (key.equals(keyTable[index])) { keyTable[index] = null; int oldValue = valueTable[index]; size--; return oldValue; } index = hash3(hashCode); if (key.equals(keyTable[index])) { keyTable[index] = null; int oldValue = valueTable[index]; size--; return oldValue; } return removeStash(key, defaultValue); } int removeStash(K key, int defaultValue) { K[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) { if (key.equals(keyTable[i])) { int oldValue = valueTable[i]; removeStashIndex(i); size--; return oldValue; } } return defaultValue; } void removeStashIndex(int index) { // If the removed location was not last, move the last tuple to the // removed location. stashSize--; int lastIndex = capacity + stashSize; if (index < lastIndex) { keyTable[index] = keyTable[lastIndex]; valueTable[index] = valueTable[lastIndex]; } } /** * Reduces the size of the backing arrays to be the specified capacity or * less. If the capacity is already less, nothing is done. If the map * contains more items than the specified capacity, the next highest power * of two capacity is used instead. */ public void shrink(int maximumCapacity) { if (maximumCapacity < 0) throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity); if (size > maximumCapacity) maximumCapacity = size; if (capacity <= maximumCapacity) return; maximumCapacity = ObjectMap.nextPowerOfTwo(maximumCapacity); resize(maximumCapacity); } /** * Clears the map and reduces the size of the backing arrays to be the * specified capacity if they are larger. */ public void clear(int maximumCapacity) { if (capacity <= maximumCapacity) { clear(); return; } size = 0; resize(maximumCapacity); } public void clear() { K[] keyTable = this.keyTable; for (int i = capacity + stashSize; i-- > 0;) keyTable[i] = null; size = 0; stashSize = 0; } /** * Returns true if the specified value is in the map. Note this traverses * the entire map and compares every value, which may be an expensive * operation. */ public boolean containsValue(int value) { int[] valueTable = this.valueTable; for (int i = capacity + stashSize; i-- > 0;) if (valueTable[i] == value) return true; return false; } public boolean containsKey(K key) { int hashCode = key.hashCode(); int index = hashCode & mask; if (!key.equals(keyTable[index])) { index = hash2(hashCode); if (!key.equals(keyTable[index])) { index = hash3(hashCode); if (!key.equals(keyTable[index])) return containsKeyStash(key); } } return true; } private boolean containsKeyStash(K key) { K[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (key.equals(keyTable[i])) return true; return false; } /** * Returns the key for the specified value, or null if it is not in the map. * Note this traverses the entire map and compares every value, which may be * an expensive operation. */ public K findKey(int value) { int[] valueTable = this.valueTable; for (int i = capacity + stashSize; i-- > 0;) if (valueTable[i] == value) return keyTable[i]; return null; } /** * Increases the size of the backing array to acommodate the specified * number of additional items. Useful before adding many items to avoid * multiple backing array resizes. */ public void ensureCapacity(int additionalCapacity) { int sizeNeeded = size + additionalCapacity; if (sizeNeeded >= threshold) resize(ObjectMap.nextPowerOfTwo((int) (sizeNeeded / loadFactor))); } @SuppressWarnings("unchecked") private void resize(int newSize) { int oldEndIndex = capacity + stashSize; capacity = newSize; threshold = (int) (newSize * loadFactor); mask = newSize - 1; hashShift = 31 - Integer.numberOfTrailingZeros(newSize); stashCapacity = Math.max(3, (int) Math.ceil(Math.log(newSize)) * 2); pushIterations = Math.max(Math.min(newSize, 8), (int) Math.sqrt(newSize) / 8); K[] oldKeyTable = keyTable; int[] oldValueTable = valueTable; keyTable = (K[]) new Object[newSize + stashCapacity]; valueTable = new int[newSize + stashCapacity]; int oldSize = size; size = 0; stashSize = 0; if (oldSize > 0) { for (int i = 0; i < oldEndIndex; i++) { K key = oldKeyTable[i]; if (key != null) putResize(key, oldValueTable[i]); } } } private int hash2(int h) { h *= PRIME2; return (h ^ h >>> hashShift) & mask; } private int hash3(int h) { h *= PRIME3; return (h ^ h >>> hashShift) & mask; } public String toString() { if (size == 0) return "{}"; StringBuilder buffer = new StringBuilder(32); buffer.append('{'); K[] keyTable = this.keyTable; int[] valueTable = this.valueTable; int i = keyTable.length; while (i-- > 0) { K key = keyTable[i]; if (key == null) continue; buffer.append(key); buffer.append('='); buffer.append(valueTable[i]); break; } while (i-- > 0) { K key = keyTable[i]; if (key == null) continue; buffer.append(", "); buffer.append(key); buffer.append('='); buffer.append(valueTable[i]); } buffer.append('}'); return buffer.toString(); } }