/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.optimization.general; import org.apache.commons.math.exception.MathUserException; import org.apache.commons.math.exception.ConvergenceException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.linear.BlockRealMatrix; import org.apache.commons.math.linear.DecompositionSolver; import org.apache.commons.math.linear.LUDecompositionImpl; import org.apache.commons.math.linear.QRDecompositionImpl; import org.apache.commons.math.linear.RealMatrix; import org.apache.commons.math.linear.SingularMatrixException; import org.apache.commons.math.optimization.VectorialPointValuePair; import org.apache.commons.math.optimization.ConvergenceChecker; /** * Gauss-Newton least-squares solver. * <p> * This class solve a least-square problem by solving the normal equations * of the linearized problem at each iteration. Either LU decomposition or * QR decomposition can be used to solve the normal equations. LU decomposition * is faster but QR decomposition is more robust for difficult problems. * </p> * * @version $Id: GaussNewtonOptimizer.java 1131229 2011-06-03 20:49:25Z luc $ * @since 2.0 * */ public class GaussNewtonOptimizer extends AbstractLeastSquaresOptimizer { /** Indicator for using LU decomposition. */ private final boolean useLU; /** * Simple constructor with default settings. * The convergence check is set to a {@link * org.apache.commons.math.optimization.SimpleVectorialValueChecker}. * * @param useLU if {@code true}, the normal equations will be solved * using LU decomposition, otherwise they will be solved using QR * decomposition. */ public GaussNewtonOptimizer(final boolean useLU) { this.useLU = useLU; } /** {@inheritDoc} */ @Override public VectorialPointValuePair doOptimize() throws MathUserException { final ConvergenceChecker<VectorialPointValuePair> checker = getConvergenceChecker(); // iterate until convergence is reached VectorialPointValuePair current = null; int iter = 0; for (boolean converged = false; !converged;) { ++iter; // evaluate the objective function and its jacobian VectorialPointValuePair previous = current; updateResidualsAndCost(); updateJacobian(); current = new VectorialPointValuePair(point, objective); final double[] targetValues = getTargetRef(); final double[] residualsWeights = getWeightRef(); // build the linear problem final double[] b = new double[cols]; final double[][] a = new double[cols][cols]; for (int i = 0; i < rows; ++i) { final double[] grad = weightedResidualJacobian[i]; final double weight = residualsWeights[i]; final double residual = objective[i] - targetValues[i]; // compute the normal equation final double wr = weight * residual; for (int j = 0; j < cols; ++j) { b[j] += wr * grad[j]; } // build the contribution matrix for measurement i for (int k = 0; k < cols; ++k) { double[] ak = a[k]; double wgk = weight * grad[k]; for (int l = 0; l < cols; ++l) { ak[l] += wgk * grad[l]; } } } try { // solve the linearized least squares problem RealMatrix mA = new BlockRealMatrix(a); DecompositionSolver solver = useLU ? new LUDecompositionImpl(mA).getSolver() : new QRDecompositionImpl(mA).getSolver(); final double[] dX = solver.solve(b); // update the estimated parameters for (int i = 0; i < cols; ++i) { point[i] += dX[i]; } } catch (SingularMatrixException e) { throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM); } // check convergence if (checker != null) { if (previous != null) { converged = checker.converged(iter, previous, current); } } } // we have converged return current; } }