/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathException; import org.apache.commons.math.analysis.UnivariateRealFunction; import org.apache.commons.math.analysis.solvers.UnivariateRealSolverUtils; import org.apache.commons.math.exception.MathUserException; import org.apache.commons.math.exception.NotStrictlyPositiveException; import org.apache.commons.math.exception.OutOfRangeException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.exception.NumberIsTooLargeException; import org.apache.commons.math.random.RandomDataImpl; import org.apache.commons.math.util.FastMath; /** * Base class for continuous distributions. Default implementations are * provided for some of the methods that do not vary from distribution to * distribution. * * @version $Id: AbstractContinuousDistribution.java 1131229 2011-06-03 20:49:25Z luc $ */ public abstract class AbstractContinuousDistribution extends AbstractDistribution implements ContinuousDistribution, Serializable { /** Default accuracy. */ public static final double SOLVER_DEFAULT_ABSOLUTE_ACCURACY = 1e-6; /** Serializable version identifier */ private static final long serialVersionUID = -38038050983108802L; /** * RandomData instance used to generate samples from the distribution * @since 2.2 */ protected final RandomDataImpl randomData = new RandomDataImpl(); /** * Solver absolute accuracy for inverse cumulative computation. * @since 2.1 */ private double solverAbsoluteAccuracy = SOLVER_DEFAULT_ABSOLUTE_ACCURACY; /** * Default constructor. */ protected AbstractContinuousDistribution() {} /** * {@inheritDoc} */ public abstract double density(double x); /** * For this distribution, {@code X}, this method returns the critical * point {@code x}, such that {@code P(X < x) = p}. * * @param p Desired probability. * @return {@code x}, such that {@code P(X < x) = p}. * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws OutOfRangeException if {@code p} is not a valid probability. */ public double inverseCumulativeProbability(final double p) throws MathException { if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0, 1); } // by default, do simple root finding using bracketing and default solver. // subclasses can override if there is a better method. UnivariateRealFunction rootFindingFunction = new UnivariateRealFunction() { public double value(double x) throws MathUserException { double ret = Double.NaN; try { ret = cumulativeProbability(x) - p; } catch (MathException ex) { throw new MathUserException(ex); } if (Double.isNaN(ret)) { throw new MathUserException(LocalizedFormats.CUMULATIVE_PROBABILITY_RETURNED_NAN, x, p); } return ret; } }; // Try to bracket root, test domain endpoints if this fails double lowerBound = getDomainLowerBound(p); double upperBound = getDomainUpperBound(p); double[] bracket = null; try { bracket = UnivariateRealSolverUtils.bracket( rootFindingFunction, getInitialDomain(p), lowerBound, upperBound); } catch (NumberIsTooLargeException ex) { /* * Check domain endpoints to see if one gives value that is within * the default solver's defaultAbsoluteAccuracy of 0 (will be the * case if density has bounded support and p is 0 or 1). */ if (FastMath.abs(rootFindingFunction.value(lowerBound)) < getSolverAbsoluteAccuracy()) { return lowerBound; } if (FastMath.abs(rootFindingFunction.value(upperBound)) < getSolverAbsoluteAccuracy()) { return upperBound; } // Failed bracket convergence was not because of corner solution throw new MathException(ex); } // find root double root = UnivariateRealSolverUtils.solve(rootFindingFunction, // override getSolverAbsoluteAccuracy() to use a Brent solver with // absolute accuracy different from the default. bracket[0],bracket[1], getSolverAbsoluteAccuracy()); return root; } /** * Reseed the random generator used to generate samples. * * @param seed New seed. * @since 2.2 */ public void reseedRandomGenerator(long seed) { randomData.reSeed(seed); } /** * Generate a random value sampled from this distribution. The default * implementation uses the * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> * inversion method. * </a> * * @return a random value. * @throws MathException if an error occurs generating the random value. * @since 2.2 */ public double sample() throws MathException { return randomData.nextInversionDeviate(this); } /** * Generate a random sample from the distribution. The default implementation * generates the sample by calling {@link #sample()} in a loop. * * @param sampleSize Number of random values to generate. * @return an array representing the random sample. * @throws MathException if an error occurs generating the sample. * @throws NotStrictlyPositiveException if {@code sampleSize} is not positive. * @since 2.2 */ public double[] sample(int sampleSize) throws MathException { if (sampleSize <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, sampleSize); } double[] out = new double[sampleSize]; for (int i = 0; i < sampleSize; i++) { out[i] = sample(); } return out; } /** * Access the initial domain value, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the initial domain value. */ protected abstract double getInitialDomain(double p); /** * Access the domain value lower bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}. */ protected abstract double getDomainLowerBound(double p); /** * Access the domain value upper bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}. */ protected abstract double getDomainUpperBound(double p); /** * Returns the solver absolute accuracy for inverse cumulative computation. * You can override this method in order to use a Brent solver with an * absolute accuracy different from the default. * * @return the maximum absolute error in inverse cumulative probability estimates * @since 2.1 */ protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * Access the lower bound of the support. * * @return lower bound of the support (might be Double.NEGATIVE_INFINITY) */ public abstract double getSupportLowerBound(); /** * Access the upper bound of the support. * * @return upper bound of the support (might be Double.POSITIVE_INFINITY) */ public abstract double getSupportUpperBound(); }