/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathException; import org.apache.commons.math.exception.NotStrictlyPositiveException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.special.Erf; import org.apache.commons.math.util.FastMath; /** * Default implementation of * {@link org.apache.commons.math.distribution.NormalDistribution}. * * @version $Id: NormalDistributionImpl.java 1131229 2011-06-03 20:49:25Z luc $ */ public class NormalDistributionImpl extends AbstractContinuousDistribution implements NormalDistribution, Serializable { /** * Default inverse cumulative probability accuracy. * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier. */ private static final long serialVersionUID = 8589540077390120676L; /** &sqrt;(2 π) */ private static final double SQRT2PI = FastMath.sqrt(2 * FastMath.PI); /** Mean of this distribution. */ private final double mean; /** Standard deviation of this distribution. */ private final double standardDeviation; /** Inverse cumulative probability accuracy. */ private final double solverAbsoluteAccuracy; /** * Create a normal distribution using the given mean and standard deviation. * * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. */ public NormalDistributionImpl(double mean, double sd){ this(mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a normal distribution using the given mean, standard deviation and * inverse cumulative distribution accuracy. * * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code sd <= 0}. * @since 2.1 */ public NormalDistributionImpl(double mean, double sd, double inverseCumAccuracy) { if (sd <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd); } this.mean = mean; standardDeviation = sd; solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Create a normal distribution with mean equal to zero and standard * deviation equal to one. */ public NormalDistributionImpl(){ this(0, 1); } /** * {@inheritDoc} */ public double getMean() { return mean; } /** * {@inheritDoc} */ public double getStandardDeviation() { return standardDeviation; } /** * {@inheritDoc} */ @Override public double density(double x) { final double x0 = x - mean; final double x1 = x0 / standardDeviation; return FastMath.exp(-0.5 * x1 * x1) / (standardDeviation * SQRT2PI); } /** * For this distribution, {@code X}, this method returns {@code P(X < x)}. * If {@code x}is more than 40 standard deviations from the mean, 0 or 1 is returned, * as in these cases the actual value is within {@code Double.MIN_VALUE} of 0 or 1. * * @param x Value at which the CDF is evaluated. * @return CDF evaluated at {@code x}. * @throws MathException if the algorithm fails to converge */ public double cumulativeProbability(double x) throws MathException { final double dev = x - mean; if (FastMath.abs(dev) > 40 * standardDeviation) { return dev < 0 ? 0.0d : 1.0d; } return 0.5 * (1 + Erf.erf(dev / (standardDeviation * FastMath.sqrt(2)))); } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy. * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * For this distribution, X, this method returns the critical point * {@code x}, such that {@code P(X < x) = p}. * It will return {@code Double.NEGATIVE_INFINITY} when p = 0 and * {@code Double.POSITIVE_INFINITY} for p = 1. * * @param p Desired probability. * @return {@code x}, such that {@code P(X < x) = p}. * @throws MathException if the inverse cumulative probability cannot be * computed due to convergence or other numerical errors. * @throws org.apache.commons.math.exception.OutOfRangeException if * {@code p} is not a valid probability. */ @Override public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return Double.NEGATIVE_INFINITY; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Generate a random value sampled from this distribution. * * @return a random value. * @since 2.2 * @throws MathException if an error occurs generating the random value. */ @Override public double sample() throws MathException { return randomData.nextGaussian(mean, standardDeviation); } /** * Access the domain value lower bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}. */ @Override protected double getDomainLowerBound(double p) { double ret; if (p < 0.5) { ret = -Double.MAX_VALUE; } else { ret = mean; } return ret; } /** * Access the domain value upper bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}. */ @Override protected double getDomainUpperBound(double p) { double ret; if (p < 0.5) { ret = mean; } else { ret = Double.MAX_VALUE; } return ret; } /** * Access the initial domain value, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the initial domain value. */ @Override protected double getInitialDomain(double p) { double ret; if (p < 0.5) { ret = mean - standardDeviation; } else if (p > 0.5) { ret = mean + standardDeviation; } else { ret = mean; } return ret; } /** * {@inheritDoc} * * The lower bound of the support is always negative infinity * no matter the parameters. * * @return lower bound of the support (always Double.NEGATIVE_INFINITY) */ @Override public double getSupportLowerBound() { return Double.NEGATIVE_INFINITY; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * {@inheritDoc} * * For mean parameter <code>mu</code>, the mean is <code>mu</code> * * @return {@inheritDoc} */ @Override protected double calculateNumericalMean() { return getMean(); } /** * {@inheritDoc} * * For standard deviation parameter <code>s</code>, * the variance is <code>s^2</code> * * @return {@inheritDoc} */ @Override protected double calculateNumericalVariance() { final double s = getStandardDeviation(); return s * s; } /** * {@inheritDoc} */ @Override public boolean isSupportLowerBoundInclusive() { return false; } /** * {@inheritDoc} */ @Override public boolean isSupportUpperBoundInclusive() { return false; } }