/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathException; /** * The default implementation of {@link ChiSquaredDistribution} * * @version $Id: ChiSquaredDistributionImpl.java 1131229 2011-06-03 20:49:25Z luc $ */ public class ChiSquaredDistributionImpl extends AbstractContinuousDistribution implements ChiSquaredDistribution, Serializable { /** * Default inverse cumulative probability accuracy * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier */ private static final long serialVersionUID = -8352658048349159782L; /** Internal Gamma distribution. */ private final GammaDistribution gamma; /** Inverse cumulative probability accuracy */ private final double solverAbsoluteAccuracy; /** * Create a Chi-Squared distribution with the given degrees of freedom. * * @param degreesOfFreedom Degrees of freedom. */ public ChiSquaredDistributionImpl(double degreesOfFreedom) { this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a Chi-Squared distribution with the given degrees of freedom and * inverse cumulative probability accuracy. * * @param degreesOfFreedom Degrees of freedom. * @param inverseCumAccuracy the maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @since 2.1 */ public ChiSquaredDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy) { gamma = new GammaDistributionImpl(degreesOfFreedom / 2, 2); solverAbsoluteAccuracy = inverseCumAccuracy; } /** * {@inheritDoc} */ public double getDegreesOfFreedom() { return gamma.getAlpha() * 2.0; } /** * {@inheritDoc} */ @Override public double density(double x) { return gamma.density(x); } /** * For this distribution, {@code X}, this method returns {@code P(X < x)}. * * @param x the value at which the CDF is evaluated. * @return CDF for this distribution. * @throws MathException if the cumulative probability cannot be * computed due to convergence or other numerical errors. */ public double cumulativeProbability(double x) throws MathException { return gamma.cumulativeProbability(x); } /** * For this distribution, X, this method returns the critical point * {@code x}, such that {@code P(X < x) = p}. * It will return 0 when p = 0 and {@code Double.POSITIVE_INFINITY} * when p = 1. * * @param p Desired probability. * @return {@code x}, such that {@code P(X < x) = p}. * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws org.apache.commons.math.exception.OutOfRangeException if * {@code p} is not a valid probability. */ @Override public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return 0d; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Access the domain value lower bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. {@code P(X < 'lower bound') < p}. */ @Override protected double getDomainLowerBound(double p) { return Double.MIN_VALUE * gamma.getBeta(); } /** * Access the domain value upper bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return domain value upper bound, i.e. {@code P(X < 'upper bound') > p}. */ @Override protected double getDomainUpperBound(double p) { // NOTE: chi squared is skewed to the left // NOTE: therefore, P(X < μ) > .5 double ret; if (p < .5) { // use mean ret = getDegreesOfFreedom(); } else { // use max ret = Double.MAX_VALUE; } return ret; } /** * Access the initial domain value, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the initial domain value. */ @Override protected double getInitialDomain(double p) { // NOTE: chi squared is skewed to the left // NOTE: therefore, P(X < μ) > 0.5 double ret; if (p < 0.5) { // use 1/2 mean ret = getDegreesOfFreedom() * 0.5; } else { // use mean ret = getDegreesOfFreedom(); } return ret; } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy. * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the * degrees of freedom. * * @return lower bound of the support (always 0) */ @Override public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity no matter the * degrees of freedom. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * {@inheritDoc} * * For <code>k</code> degrees of freedom, the mean is * <code>k</code> * * @return {@inheritDoc} */ @Override protected double calculateNumericalMean() { return getDegreesOfFreedom(); } /** * {@inheritDoc} * * For <code>k</code> degrees of freedom, the variance is * <code>2 * k</code> * * @return {@inheritDoc} */ @Override protected double calculateNumericalVariance() { return 2*getDegreesOfFreedom(); } /** * {@inheritDoc} */ @Override public boolean isSupportLowerBoundInclusive() { return true; } /** * {@inheritDoc} */ @Override public boolean isSupportUpperBoundInclusive() { return false; } }