/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathException; import org.apache.commons.math.exception.NotStrictlyPositiveException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.special.Gamma; import org.apache.commons.math.util.FastMath; /** * The default implementation of {@link GammaDistribution}. * * @version $Id: GammaDistributionImpl.java 1131229 2011-06-03 20:49:25Z luc $ */ public class GammaDistributionImpl extends AbstractContinuousDistribution implements GammaDistribution, Serializable { /** * Default inverse cumulative probability accuracy. * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier. */ private static final long serialVersionUID = -3239549463135430361L; /** The shape parameter. */ private final double alpha; /** The scale parameter. */ private final double beta; /** Inverse cumulative probability accuracy. */ private final double solverAbsoluteAccuracy; /** * Create a new gamma distribution with the given alpha and beta values. * @param alpha the shape parameter. * @param beta the scale parameter. */ public GammaDistributionImpl(double alpha, double beta) { this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a new gamma distribution with the given alpha and beta values. * * @param alpha Shape parameter. * @param beta Scale parameter. * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code alpha <= 0} or * {@code beta <= 0}. * @since 2.1 */ public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) { if (alpha <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.ALPHA, alpha); } if (beta <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.BETA, beta); } this.alpha = alpha; this.beta = beta; solverAbsoluteAccuracy = inverseCumAccuracy; } /** * For this distribution, {@code X}, this method returns {@code P(X < x)}. * * The implementation of this method is based on: * <ul> * <li> * <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html"> * Chi-Squared Distribution</a>, equation (9). * </li> * <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>. * Belmont, CA: Duxbury Press. * </li> * </ul> * * @param x Value at which the CDF is evaluated. * @return CDF for this distribution. * @throws MathException if the cumulative probability can not be * computed due to convergence or other numerical errors. */ public double cumulativeProbability(double x) throws MathException{ double ret; if (x <= 0) { ret = 0; } else { ret = Gamma.regularizedGammaP(alpha, x / beta); } return ret; } /** * For this distribution, {@code X}, this method returns the critical * point {@code x}, such that {@code P(X < x) = p}. * It will return 0 when p = 0 and {@code Double.POSITIVE_INFINITY} * when p = 1. * * @param p Desired probability. * @return {@code x}, such that {@code P(X < x) = p}. * @throws MathException if the inverse cumulative probability cannot be * computed due to convergence or other numerical errors. * @throws org.apache.commons.math.exception.OutOfRangeException if * {@code p} is not a valid probability. */ @Override public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return 0; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * {@inheritDoc} */ public double getAlpha() { return alpha; } /** * {@inheritDoc} */ public double getBeta() { return beta; } /** * {@inheritDoc} */ @Override public double density(double x) { if (x < 0) return 0; return FastMath.pow(x / beta, alpha - 1) / beta * FastMath.exp(-x / beta) / FastMath.exp(Gamma.logGamma(alpha)); } /** * Access the domain value lower bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}. */ @Override protected double getDomainLowerBound(double p) { // TODO: try to improve on this estimate return Double.MIN_VALUE; } /** * Access the domain value upper bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}. */ @Override protected double getDomainUpperBound(double p) { // TODO: try to improve on this estimate // NOTE: gamma is skewed to the left // NOTE: therefore, P(X < μ) > .5 double ret; if (p < 0.5) { // use mean ret = alpha * beta; } else { // use max value ret = Double.MAX_VALUE; } return ret; } /** * Access the initial domain value, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the initial domain value. */ @Override protected double getInitialDomain(double p) { // TODO: try to improve on this estimate // Gamma is skewed to the left, therefore, P(X < μ) > .5 double ret; if (p < 0.5) { // use 1/2 mean ret = alpha * beta * 0.5; } else { // use mean ret = alpha * beta; } return ret; } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy. * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ @Override public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * {@inheritDoc} * * For shape parameter <code>alpha</code> and scale * parameter <code>beta</code>, the mean is * <code>alpha * beta</code> * * @return {@inheritDoc} */ @Override protected double calculateNumericalMean() { return getAlpha() * getBeta(); } /** * {@inheritDoc} * * For shape parameter <code>alpha</code> and scale * parameter <code>beta</code>, the variance is * <code>alpha * beta^2</code> * * @return {@inheritDoc} */ @Override protected double calculateNumericalVariance() { final double b = getBeta(); return getAlpha() * b * b; } /** * {@inheritDoc} */ @Override public boolean isSupportLowerBoundInclusive() { return true; } /** * {@inheritDoc} */ @Override public boolean isSupportUpperBoundInclusive() { return false; } }