/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.ode.sampling; import org.apache.commons.math.exception.MathUserException; import org.apache.commons.math.util.FastMath; /** * This class wraps an object implementing {@link FixedStepHandler} * into a {@link StepHandler}. * <p>This wrapper allows to use fixed step handlers with general * integrators which cannot guaranty their integration steps will * remain constant and therefore only accept general step * handlers.</p> * * <p>The stepsize used is selected at construction time. The {@link * FixedStepHandler#handleStep handleStep} method of the underlying * {@link FixedStepHandler} object is called at the beginning time of * the integration t0 and also at times t0+h, t0+2h, ... If the * integration range is an integer multiple of the stepsize, then the * last point handled will be the endpoint of the integration tend, if * not, the last point will belong to the interval [tend - h ; * tend].</p> * * <p>There is no constraint on the integrator, it can use any * timestep it needs (time steps longer or shorter than the fixed time * step and non-integer ratios are all allowed).</p> * * @see StepHandler * @see FixedStepHandler * @version $Id: StepNormalizer.java 1131229 2011-06-03 20:49:25Z luc $ * @since 1.2 */ public class StepNormalizer implements StepHandler { /** Fixed time step. */ private double h; /** Underlying step handler. */ private final FixedStepHandler handler; /** Last step time. */ private double lastTime; /** Last State vector. */ private double[] lastState; /** Last Derivatives vector. */ private double[] lastDerivatives; /** Integration direction indicator. */ private boolean forward; /** Simple constructor. * @param h fixed time step (sign is not used) * @param handler fixed time step handler to wrap */ public StepNormalizer(final double h, final FixedStepHandler handler) { this.h = FastMath.abs(h); this.handler = handler; reset(); } /** Determines whether this handler needs dense output. * This handler needs dense output in order to provide data at * regularly spaced steps regardless of the steps the integrator * uses, so this method always returns true. * @return always true */ public boolean requiresDenseOutput() { return true; } /** Reset the step handler. * Initialize the internal data as required before the first step is * handled. */ public void reset() { lastTime = Double.NaN; lastState = null; lastDerivatives = null; forward = true; } /** * Handle the last accepted step * @param interpolator interpolator for the last accepted step. For * efficiency purposes, the various integrators reuse the same * object on each call, so if the instance wants to keep it across * all calls (for example to provide at the end of the integration a * continuous model valid throughout the integration range), it * should build a local copy using the clone method and store this * copy. * @param isLast true if the step is the last one * @throws MathUserException this exception is propagated to the * caller if the underlying user function triggers one */ public void handleStep(final StepInterpolator interpolator, final boolean isLast) throws MathUserException { if (lastState == null) { lastTime = interpolator.getPreviousTime(); interpolator.setInterpolatedTime(lastTime); lastState = interpolator.getInterpolatedState().clone(); lastDerivatives = interpolator.getInterpolatedDerivatives().clone(); // take the integration direction into account forward = interpolator.getCurrentTime() >= lastTime; if (! forward) { h = -h; } } double nextTime = lastTime + h; boolean nextInStep = forward ^ (nextTime > interpolator.getCurrentTime()); while (nextInStep) { // output the stored previous step handler.handleStep(lastTime, lastState, lastDerivatives, false); // store the next step lastTime = nextTime; interpolator.setInterpolatedTime(lastTime); System.arraycopy(interpolator.getInterpolatedState(), 0, lastState, 0, lastState.length); System.arraycopy(interpolator.getInterpolatedDerivatives(), 0, lastDerivatives, 0, lastDerivatives.length); nextTime += h; nextInStep = forward ^ (nextTime > interpolator.getCurrentTime()); } if (isLast) { // there will be no more steps, // the stored one should be flagged as being the last handler.handleStep(lastTime, lastState, lastDerivatives, true); } } }