/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.exception.OutOfRangeException; import org.apache.commons.math.exception.NotStrictlyPositiveException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.special.Gamma; import org.apache.commons.math.util.FastMath; /** * Default implementation of * {@link org.apache.commons.math.distribution.WeibullDistribution}. * * @since 1.1 * @version $Id: WeibullDistributionImpl.java 1131229 2011-06-03 20:49:25Z luc $ */ public class WeibullDistributionImpl extends AbstractContinuousDistribution implements WeibullDistribution, Serializable { /** * Default inverse cumulative probability accuracy. * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier. */ private static final long serialVersionUID = 8589540077390120676L; /** The shape parameter. */ private final double shape; /** The scale parameter. */ private final double scale; /** Inverse cumulative probability accuracy. */ private final double solverAbsoluteAccuracy; /** * Create a Weibull distribution with the given shape and scale and a * location equal to zero. * * @param alpha Shape parameter. * @param beta Scale parameter. */ public WeibullDistributionImpl(double alpha, double beta) { this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a Weibull distribution with the given shape, scale and inverse * cumulative probability accuracy and a location equal to zero. * * @param alpha Shape parameter. * @param beta Scale parameter. * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code alpha <= 0} or * {@code beta <= 0}. * @since 2.1 */ public WeibullDistributionImpl(double alpha, double beta, double inverseCumAccuracy) { if (alpha <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, alpha); } if (beta <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, beta); } scale = beta; shape = alpha; solverAbsoluteAccuracy = inverseCumAccuracy; } /** * For this distribution, {@code X}, this method returns {@code P(X < x)}. * * @param x Value at which the CDF is evaluated. * @return the CDF evaluated at {@code x}. */ public double cumulativeProbability(double x) { double ret; if (x <= 0.0) { ret = 0.0; } else { ret = 1.0 - FastMath.exp(-FastMath.pow(x / scale, shape)); } return ret; } /** * {@inheritDoc} */ public double getShape() { return shape; } /** * {@inheritDoc} */ public double getScale() { return scale; } /** * {@inheritDoc} */ @Override public double density(double x) { if (x < 0) { return 0; } final double xscale = x / scale; final double xscalepow = FastMath.pow(xscale, shape - 1); /* * FastMath.pow(x / scale, shape) = * FastMath.pow(xscale, shape) = * FastMath.pow(xscale, shape - 1) * xscale */ final double xscalepowshape = xscalepow * xscale; return (shape / scale) * xscalepow * FastMath.exp(-xscalepowshape); } /** * For this distribution, {@code X}, this method returns the critical * point {@code x}, such that {@code P(X < x) = p}. * It will return {@code Double.NEGATIVE_INFINITY} when p = 0 and * {@code Double.POSITIVE_INFINITY} when p = 1. * * @param p Desired probability. * @return {@code x}, such that {@code P(X < x) = p}. * @throws OutOfRangeException if {@code p} is not a valid probability. */ @Override public double inverseCumulativeProbability(double p) { double ret; if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0.0, 1.0); } else if (p == 0) { ret = 0.0; } else if (p == 1) { ret = Double.POSITIVE_INFINITY; } else { ret = scale * FastMath.pow(-FastMath.log(1.0 - p), 1.0 / shape); } return ret; } /** * Access the domain value lower bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}. */ @Override protected double getDomainLowerBound(double p) { return 0; } /** * Access the domain value upper bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}. */ @Override protected double getDomainUpperBound(double p) { return Double.MAX_VALUE; } /** * Access the initial domain value, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the initial domain value. */ @Override protected double getInitialDomain(double p) { // use median return FastMath.pow(scale * FastMath.log(2.0), 1.0 / shape); } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy. * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ @Override public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * {@inheritDoc} * * The mean is <code>scale * Gamma(1 + (1 / shape))</code> * where <code>Gamma(...)</code> is the Gamma-function * * @return {@inheritDoc} */ @Override protected double calculateNumericalMean() { final double sh = getShape(); final double sc = getScale(); return sc * FastMath.exp(Gamma.logGamma(1 + (1 / sh))); } /** * {@inheritDoc} * * The variance is * <code>scale^2 * Gamma(1 + (2 / shape)) - mean^2</code> * where <code>Gamma(...)</code> is the Gamma-function * * @return {@inheritDoc} */ @Override protected double calculateNumericalVariance() { final double sh = getShape(); final double sc = getScale(); final double mn = getNumericalMean(); return (sc * sc) * FastMath.exp(Gamma.logGamma(1 + (2 / sh))) - (mn * mn); } /** * {@inheritDoc} */ @Override public boolean isSupportLowerBoundInclusive() { return true; } /** * {@inheritDoc} */ @Override public boolean isSupportUpperBoundInclusive() { return false; } }