/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathException; import org.apache.commons.math.exception.OutOfRangeException; import org.apache.commons.math.exception.NotPositiveException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.special.Beta; import org.apache.commons.math.util.FastMath; /** * The default implementation of {@link BinomialDistribution}. * * @version $Id: BinomialDistributionImpl.java 1131229 2011-06-03 20:49:25Z luc $ */ public class BinomialDistributionImpl extends AbstractIntegerDistribution implements BinomialDistribution, Serializable { /** Serializable version identifier. */ private static final long serialVersionUID = 6751309484392813623L; /** The number of trials. */ private final int numberOfTrials; /** The probability of success. */ private final double probabilityOfSuccess; /** * Create a binomial distribution with the given number of trials and * probability of success. * * @param trials Number of trials. * @param p Probability of success. * @throws NotPositiveException if {@code trials < 0}. * @throws OutOfRangeException if {@code p < 0} or {@code p > 1}. */ public BinomialDistributionImpl(int trials, double p) { if (trials < 0) { throw new NotPositiveException(LocalizedFormats.NUMBER_OF_TRIALS, trials); } if (p < 0 || p > 1) { throw new OutOfRangeException(p, 0, 1); } probabilityOfSuccess = p; numberOfTrials = trials; } /** * {@inheritDoc} */ public int getNumberOfTrials() { return numberOfTrials; } /** * {@inheritDoc} */ public double getProbabilityOfSuccess() { return probabilityOfSuccess; } /** * Access the domain value lower bound, based on {@code p}, used to * bracket a PDF root. * * @param p Desired probability for the critical value. * @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}. */ @Override protected int getDomainLowerBound(double p) { return -1; } /** * Access the domain value upper bound, based on {@code p}, used to * bracket a PDF root. * * @param p Desired probability for the critical value * @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}. */ @Override protected int getDomainUpperBound(double p) { return numberOfTrials; } /** * For this distribution, {@code X}, this method returns {@code P(X < x)}. * * @param x Value at which the PDF is evaluated. * @return PDF for this distribution. * @throws MathException if the cumulative probability can not be computed * due to convergence or other numerical errors. */ @Override public double cumulativeProbability(int x) throws MathException { double ret; if (x < 0) { ret = 0.0; } else if (x >= numberOfTrials) { ret = 1.0; } else { ret = 1.0 - Beta.regularizedBeta(getProbabilityOfSuccess(), x + 1.0, numberOfTrials - x); } return ret; } /** * For this distribution, {@code X}, this method returns {@code P(X = x)}. * * @param x Value at which the PMF is evaluated. * @return PMF for this distribution. */ public double probability(int x) { double ret; if (x < 0 || x > numberOfTrials) { ret = 0.0; } else { ret = FastMath.exp(SaddlePointExpansion.logBinomialProbability(x, numberOfTrials, probabilityOfSuccess, 1.0 - probabilityOfSuccess)); } return ret; } /** * For this distribution, {@code X}, this method returns the largest * {@code x}, such that {@code P(X < x) p}. * It will return -1 when p = 0 and {@code Integer.MAX_VALUE} when p = 1. * * @param p Desired probability. * @return the largest {@code x} such that {@code P(X < x) <= p}. * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws OutOfRangeException if {@code p < 0} or {@code p > 1}. */ @Override public int inverseCumulativeProbability(final double p) throws MathException { // handle extreme values explicitly if (p == 0) { return -1; } if (p == 1) { return Integer.MAX_VALUE; } // use default bisection impl return super.inverseCumulativeProbability(p); } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the number of trials * and probability parameter. * * @return lower bound of the support (always 0) */ @Override public int getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is the number of trials. * * @return upper bound of the support (equal to number of trials) */ @Override public int getSupportUpperBound() { return getNumberOfTrials(); } /** * {@inheritDoc} * * For <code>n</code> number of trials and * probability parameter <code>p</code>, the mean is * <code>n * p</code> * * @return {@inheritDoc} */ @Override protected double calculateNumericalMean() { return (double)getNumberOfTrials() * getProbabilityOfSuccess(); } /** * {@inheritDoc} * * For <code>n</code> number of trials and * probability parameter <code>p</code>, the variance is * <code>n * p * (1 - p)</code> * * @return {@inheritDoc} */ @Override protected double calculateNumericalVariance() { final double p = getProbabilityOfSuccess(); return (double)getNumberOfTrials() * p * (1 - p); } }