/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.analysis.solvers; import org.apache.commons.math.exception.NoBracketingException; import org.apache.commons.math.util.FastMath; /** * Implements a modified version of the * <a href="http://mathworld.wolfram.com/SecantMethod.html">secant method</a> * for approximating a zero of a real univariate function. * <p> * The algorithm is modified to maintain bracketing of a root by successive * approximations. Because of forced bracketing, convergence may be slower than * the unrestricted secant algorithm. However, this implementation should in * general outperform the * <a href="http://mathworld.wolfram.com/MethodofFalsePosition.html"> * regula falsi method.</a></p> * <p> * The function is assumed to be continuous but not necessarily smooth.</p> * * @version $Id: SecantSolver.java 1131229 2011-06-03 20:49:25Z luc $ */ public class SecantSolver extends AbstractUnivariateRealSolver { /** Default absolute accuracy. */ private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6; /** * Construct a solver with default accuracy (1e-6). */ public SecantSolver() { this(DEFAULT_ABSOLUTE_ACCURACY); } /** * Construct a solver. * * @param absoluteAccuracy Absolute accuracy. */ public SecantSolver(double absoluteAccuracy) { super(absoluteAccuracy); } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. */ public SecantSolver(double relativeAccuracy, double absoluteAccuracy) { super(relativeAccuracy, absoluteAccuracy); } /** * {@inheritDoc} */ @Override protected double doSolve() { double min = getMin(); double max = getMax(); verifyInterval(min, max); final double functionValueAccuracy = getFunctionValueAccuracy(); // Index 0 is the old approximation for the root. // Index 1 is the last calculated approximation for the root. // Index 2 is a bracket for the root with respect to x0. // OldDelta is the length of the bracketing interval of the last // iteration. double x0 = min; double x1 = max; double y0 = computeObjectiveValue(x0); // return the first endpoint if it is good enough if (FastMath.abs(y0) <= functionValueAccuracy) { return x0; } // return the second endpoint if it is good enough double y1 = computeObjectiveValue(x1); if (FastMath.abs(y1) <= functionValueAccuracy) { return x1; } // Verify bracketing if (y0 * y1 >= 0) { throw new NoBracketingException(min, max, y0, y1); } final double absoluteAccuracy = getAbsoluteAccuracy(); final double relativeAccuracy = getRelativeAccuracy(); double x2 = x0; double y2 = y0; double oldDelta = x2 - x1; while (true) { if (FastMath.abs(y2) < FastMath.abs(y1)) { x0 = x1; x1 = x2; x2 = x0; y0 = y1; y1 = y2; y2 = y0; } if (FastMath.abs(y1) <= functionValueAccuracy) { return x1; } if (FastMath.abs(oldDelta) < FastMath.max(relativeAccuracy * FastMath.abs(x1), absoluteAccuracy)) { return x1; } double delta; if (FastMath.abs(y1) > FastMath.abs(y0)) { // Function value increased in last iteration. Force bisection. delta = 0.5 * oldDelta; } else { delta = (x0 - x1) / (1 - y0 / y1); if (delta / oldDelta > 1) { // New approximation falls outside bracket. // Fall back to bisection. delta = 0.5 * oldDelta; } } x0 = x1; y0 = y1; x1 = x1 + delta; y1 = computeObjectiveValue(x1); if ((y1 > 0) == (y2 > 0)) { // New bracket is (x0,x1). x2 = x0; y2 = y0; } oldDelta = x2 - x1; } } }