/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathException; import org.apache.commons.math.exception.NotStrictlyPositiveException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.special.Beta; import org.apache.commons.math.util.FastMath; /** * Default implementation of * {@link org.apache.commons.math.distribution.FDistribution}. * * @version $Id: FDistributionImpl.java 1131229 2011-06-03 20:49:25Z luc $ */ public class FDistributionImpl extends AbstractContinuousDistribution implements FDistribution, Serializable { /** * Default inverse cumulative probability accuracy. * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier. */ private static final long serialVersionUID = -8516354193418641566L; /** The numerator degrees of freedom. */ private final double numeratorDegreesOfFreedom; /** The numerator degrees of freedom. */ private final double denominatorDegreesOfFreedom; /** Inverse cumulative probability accuracy. */ private final double solverAbsoluteAccuracy; /** * Create a F distribution using the given degrees of freedom. * @param numeratorDegreesOfFreedom Numerator degrees of freedom. * @param denominatorDegreesOfFreedom Denominator degrees of freedom. * @throws NotStrictlyPositiveException if {@code numeratorDegreesOfFreedom <= 0} * or {@code denominatorDegreesOfFreedom <= 0}. */ public FDistributionImpl(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom) { this(numeratorDegreesOfFreedom, denominatorDegreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create an F distribution using the given degrees of freedom * and inverse cumulative probability accuracy. * @param numeratorDegreesOfFreedom Numerator degrees of freedom. * @param denominatorDegreesOfFreedom Denominator degrees of freedom. * @param inverseCumAccuracy the maximum absolute error in inverse * cumulative probability estimates. * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}) * @throws NotStrictlyPositiveException if {@code numeratorDegreesOfFreedom <= 0} * or {@code denominatorDegreesOfFreedom <= 0}. * @since 2.1 */ public FDistributionImpl(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom, double inverseCumAccuracy) { if (numeratorDegreesOfFreedom <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM, numeratorDegreesOfFreedom); } if (denominatorDegreesOfFreedom <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM, denominatorDegreesOfFreedom); } this.numeratorDegreesOfFreedom = numeratorDegreesOfFreedom; this.denominatorDegreesOfFreedom = denominatorDegreesOfFreedom; solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Returns the probability density for a particular point. * * @param x The point at which the density should be computed. * @return The pdf at point x. * @since 2.1 */ @Override public double density(double x) { final double nhalf = numeratorDegreesOfFreedom / 2; final double mhalf = denominatorDegreesOfFreedom / 2; final double logx = FastMath.log(x); final double logn = FastMath.log(numeratorDegreesOfFreedom); final double logm = FastMath.log(denominatorDegreesOfFreedom); final double lognxm = FastMath.log(numeratorDegreesOfFreedom * x + denominatorDegreesOfFreedom); return FastMath.exp(nhalf * logn + nhalf * logx - logx + mhalf * logm - nhalf * lognxm - mhalf * lognxm - Beta.logBeta(nhalf, mhalf)); } /** * For this distribution, {@code X}, this method returns {@code P(X < x)}. * * The implementation of this method is based on * <ul> * <li> * <a href="http://mathworld.wolfram.com/F-Distribution.html"> * F-Distribution</a>, equation (4). * </li> * </ul> * * @param x Value at which the CDF is evaluated. * @return CDF for this distribution. * @throws MathException if the cumulative probability cannot be * computed due to convergence or other numerical errors. */ public double cumulativeProbability(double x) throws MathException { double ret; if (x <= 0) { ret = 0; } else { double n = numeratorDegreesOfFreedom; double m = denominatorDegreesOfFreedom; ret = Beta.regularizedBeta((n * x) / (m + n * x), 0.5 * n, 0.5 * m); } return ret; } /** * For this distribution, {@code X}, this method returns the critical * point {@code x}, such that {@code P(X < x) = p}. * Returns 0 when p = 0 and {@code Double.POSITIVE_INFINITY} when p = 1. * * @param p Desired probability. * @return {@code x}, such that {@code P(X < x) = p}. * @throws MathException if the inverse cumulative probability cannot be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if {@code p} is not a valid * probability. */ @Override public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return 0; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Access the domain value lower bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}. */ @Override protected double getDomainLowerBound(double p) { return 0; } /** * Access the domain value upper bound, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}. */ @Override protected double getDomainUpperBound(double p) { return Double.MAX_VALUE; } /** * Access the initial domain value, based on {@code p}, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p Desired probability for the critical value. * @return the initial domain value. */ @Override protected double getInitialDomain(double p) { double ret = 1; double d = denominatorDegreesOfFreedom; if (d > 2) { // use mean ret = d / (d - 2); } return ret; } /** * {@inheritDoc} */ public double getNumeratorDegreesOfFreedom() { return numeratorDegreesOfFreedom; } /** * {@inheritDoc} */ public double getDenominatorDegreesOfFreedom() { return denominatorDegreesOfFreedom; } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ @Override public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * {@inheritDoc} * * For denominator degrees of freedom parameter <code>b</code>, * the mean is * <ul> * <li>if <code>b > 2</code> then <code>b / (b - 2)</code></li> * <li>else <code>undefined</code> * </ul> * * @return {@inheritDoc} */ @Override protected double calculateNumericalMean() { final double denominatorDF = getDenominatorDegreesOfFreedom(); if (denominatorDF > 2) { return denominatorDF / (denominatorDF - 2); } return Double.NaN; } /** * {@inheritDoc} * * For numerator degrees of freedom parameter <code>a</code> * and denominator degrees of freedom parameter <code>b</code>, * the variance is * <ul> * <li> * if <code>b > 4</code> then * <code>[ 2 * b^2 * (a + b - 2) ] / [ a * (b - 2)^2 * (b - 4) ]</code> * </li> * <li>else <code>undefined</code> * </ul> * * @return {@inheritDoc} */ @Override protected double calculateNumericalVariance() { final double denominatorDF = getDenominatorDegreesOfFreedom(); if (denominatorDF > 4) { final double numeratorDF = getNumeratorDegreesOfFreedom(); final double denomDFMinusTwo = denominatorDF - 2; return ( 2 * (denominatorDF * denominatorDF) * (numeratorDF + denominatorDF - 2) ) / ( (numeratorDF * (denomDFMinusTwo * denomDFMinusTwo) * (denominatorDF - 4)) ); } return Double.NaN; } /** * {@inheritDoc} */ @Override public boolean isSupportLowerBoundInclusive() { return true; } /** * {@inheritDoc} */ @Override public boolean isSupportUpperBoundInclusive() { return false; } }