/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.exception.NotPositiveException; import org.apache.commons.math.exception.NotStrictlyPositiveException; import org.apache.commons.math.exception.NumberIsTooLargeException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.util.MathUtils; import org.apache.commons.math.util.FastMath; /** * The default implementation of {@link HypergeometricDistribution}. * * @version $Id: HypergeometricDistributionImpl.java 1131229 2011-06-03 20:49:25Z luc $ */ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution implements HypergeometricDistribution, Serializable { /** Serializable version identifier. */ private static final long serialVersionUID = -436928820673516179L; /** The number of successes in the population. */ private final int numberOfSuccesses; /** The population size. */ private final int populationSize; /** The sample size. */ private final int sampleSize; /** * Construct a new hypergeometric distribution with the given the * population size, the number of successes in the population, and * the sample size. * * @param populationSize Population size. * @param numberOfSuccesses Number of successes in the population. * @param sampleSize Sample size. * @throws NotPositiveException if {@code numberOfSuccesses < 0}. * @throws NotStrictlyPositiveException if {@code populationSize <= 0}. * @throws NotPositiveException if {@code populationSize < 0}. * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}. * @throws NumberIsTooLargeException if {@code sampleSize > populationSize}. */ public HypergeometricDistributionImpl(int populationSize, int numberOfSuccesses, int sampleSize) { if (populationSize <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.POPULATION_SIZE, populationSize); } if (numberOfSuccesses < 0) { throw new NotPositiveException(LocalizedFormats.NUMBER_OF_SUCCESSES, numberOfSuccesses); } if (sampleSize < 0) { throw new NotPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, sampleSize); } if (numberOfSuccesses > populationSize) { throw new NumberIsTooLargeException(LocalizedFormats.NUMBER_OF_SUCCESS_LARGER_THAN_POPULATION_SIZE, numberOfSuccesses, populationSize, true); } if (sampleSize > populationSize) { throw new NumberIsTooLargeException(LocalizedFormats.SAMPLE_SIZE_LARGER_THAN_POPULATION_SIZE, sampleSize, populationSize, true); } this.numberOfSuccesses = numberOfSuccesses; this.populationSize = populationSize; this.sampleSize = sampleSize; } /** * For this distribution, {@code X}, this method returns {@code P(X < x)}. * * @param x Value at which the PDF is evaluated. * @return PDF for this distribution. */ @Override public double cumulativeProbability(int x) { double ret; int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize); if (x < domain[0]) { ret = 0.0; } else if (x >= domain[1]) { ret = 1.0; } else { ret = innerCumulativeProbability(domain[0], x, 1, populationSize, numberOfSuccesses, sampleSize); } return ret; } /** * Return the domain for the given hypergeometric distribution parameters. * * @param n Population size. * @param m Number of successes in the population. * @param k Sample size. * @return a two element array containing the lower and upper bounds of the * hypergeometric distribution. */ private int[] getDomain(int n, int m, int k) { return new int[] { getLowerDomain(n, m, k), getUpperDomain(m, k) }; } /** * Access the domain value lower bound, based on {@code p}, used to * bracket a PDF root. * * @param p Desired probability for the critical value. * @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}. */ @Override protected int getDomainLowerBound(double p) { return getLowerDomain(populationSize, numberOfSuccesses, sampleSize); } /** * Access the domain value upper bound, based on {@code p}, used to * bracket a PDF root. * * @param p Desired probability for the critical value * @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}. */ @Override protected int getDomainUpperBound(double p) { return getUpperDomain(sampleSize, numberOfSuccesses); } /** * Return the lowest domain value for the given hypergeometric distribution * parameters. * * @param n Population size. * @param m Number of successes in the population. * @param k Sample size. * @return the lowest domain value of the hypergeometric distribution. */ private int getLowerDomain(int n, int m, int k) { return FastMath.max(0, m - (n - k)); } /** * {@inheritDoc} */ public int getNumberOfSuccesses() { return numberOfSuccesses; } /** * {@inheritDoc} */ public int getPopulationSize() { return populationSize; } /** * {@inheritDoc} */ public int getSampleSize() { return sampleSize; } /** * Return the highest domain value for the given hypergeometric distribution * parameters. * * @param m Number of successes in the population. * @param k Sample size. * @return the highest domain value of the hypergeometric distribution. */ private int getUpperDomain(int m, int k) { return FastMath.min(k, m); } /** * For this distribution, {@code X}, this method returns {@code P(X = x)}. * * @param x Value at which the PMF is evaluated. * @return PMF for this distribution. */ public double probability(int x) { double ret; int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize); if (x < domain[0] || x > domain[1]) { ret = 0.0; } else { double p = (double) sampleSize / (double) populationSize; double q = (double) (populationSize - sampleSize) / (double) populationSize; double p1 = SaddlePointExpansion.logBinomialProbability(x, numberOfSuccesses, p, q); double p2 = SaddlePointExpansion.logBinomialProbability(sampleSize - x, populationSize - numberOfSuccesses, p, q); double p3 = SaddlePointExpansion.logBinomialProbability(sampleSize, populationSize, p, q); ret = FastMath.exp(p1 + p2 - p3); } return ret; } /** * For this distribution, {@code X}, defined by the given hypergeometric * distribution parameters, this method returns {@code P(X = x)}. * * @param x Value at which the PMF is evaluated. * @param n the population size. * @param m number of successes in the population. * @param k the sample size. * @return PMF for the distribution. */ private double probability(int n, int m, int k, int x) { return FastMath.exp(MathUtils.binomialCoefficientLog(m, x) + MathUtils.binomialCoefficientLog(n - m, k - x) - MathUtils.binomialCoefficientLog(n, k)); } /** * For this distribution, {@code X}, this method returns {@code P(X >= x)}. * * @param x Value at which the CDF is evaluated. * @return the upper tail CDF for this distribution. * @since 1.1 */ public double upperCumulativeProbability(int x) { double ret; final int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize); if (x < domain[0]) { ret = 1.0; } else if (x > domain[1]) { ret = 0.0; } else { ret = innerCumulativeProbability(domain[1], x, -1, populationSize, numberOfSuccesses, sampleSize); } return ret; } /** * For this distribution, {@code X}, this method returns * {@code P(x0 <= X <= x1)}. * This probability is computed by summing the point probabilities for the * values {@code x0, x0 + 1, x0 + 2, ..., x1}, in the order directed by * {@code dx}. * * @param x0 Inclusive lower bound. * @param x1 Inclusive upper bound. * @param dx Direction of summation (1 indicates summing from x0 to x1, and * 0 indicates summing from x1 to x0). * @param n the population size. * @param m number of successes in the population. * @param k the sample size. * @return {@code P(x0 <= X <= x1)}. */ private double innerCumulativeProbability(int x0, int x1, int dx, int n, int m, int k) { double ret = probability(n, m, k, x0); while (x0 != x1) { x0 += dx; ret += probability(n, m, k, x0); } return ret; } /** * {@inheritDoc} * * For population size <code>N</code>, * number of successes <code>m</code>, and * sample size <code>n</code>, * the lower bound of the support is * <code>max(0, n + m - N)</code> * * @return lower bound of the support */ @Override public int getSupportLowerBound() { return FastMath.max(0, getSampleSize() + getNumberOfSuccesses() - getPopulationSize()); } /** * {@inheritDoc} * * For number of successes <code>m</code> and * sample size <code>n</code>, * the upper bound of the support is * <code>min(m, n)</code> * * @return upper bound of the support */ @Override public int getSupportUpperBound() { return FastMath.min(getNumberOfSuccesses(), getSampleSize()); } /** * {@inheritDoc} * * For population size <code>N</code>, * number of successes <code>m</code>, and * sample size <code>n</code>, the mean is * <code>n * m / N</code> * * @return {@inheritDoc} */ @Override protected double calculateNumericalMean() { return (double)(getSampleSize() * getNumberOfSuccesses()) / (double)getPopulationSize(); } /** * {@inheritDoc} * * For population size <code>N</code>, * number of successes <code>m</code>, and * sample size <code>n</code>, the variance is * <code>[ n * m * (N - n) * (N - m) ] / [ N^2 * (N - 1) ]</code> * * @return {@inheritDoc} */ @Override protected double calculateNumericalVariance() { final double N = getPopulationSize(); final double m = getNumberOfSuccesses(); final double n = getSampleSize(); return ( n * m * (N - n) * (N - m) ) / ( (N*N * (N - 1)) ); } }