/* * Copyright 2011 The Netty Project * * The Netty Project licenses this file to you under the Apache License, * version 2.0 (the "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. */ /* Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of the authors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This program is based on zlib-1.1.3, so all credit should go authors * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu) * and contributors of zlib. */ package org.jboss.netty.util.internal.jzlib; final class InfBlocks { // And'ing with mask[n] masks the lower n bits private static final int[] inflate_mask = { 0x00000000, 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff }; // Table for deflate from PKZIP's appnote.txt. private static final int[] border = { // Order of the bit length code lengths 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; private static final int TYPE = 0; // get type bits (3, including end bit) private static final int LENS = 1; // get lengths for stored private static final int STORED = 2; // processing stored block private static final int TABLE = 3; // get table lengths private static final int BTREE = 4; // get bit lengths tree for a dynamic block private static final int DTREE = 5; // get length, distance trees for a dynamic block private static final int CODES = 6; // processing fixed or dynamic block private static final int DRY = 7; // output remaining window bytes private static final int DONE = 8; // finished last block, done private static final int BAD = 9; // ot a data error--stuck here private int mode; // current inflate_block mode private int left; // if STORED, bytes left to copy private int table; // table lengths (14 bits) private int index; // index into blens (or border) private int[] blens; // bit lengths of codes private final int[] bb = new int[1]; // bit length tree depth private final int[] tb = new int[1]; // bit length decoding tree private final InfCodes codes = new InfCodes(); // if CODES, current state private int last; // true if this block is the last block // mode independent information int bitk; // bits in bit buffer int bitb; // bit buffer private int[] hufts; // single malloc for tree space byte[] window; // sliding window final int end; // one byte after sliding window int read; // window read pointer int write; // window write pointer private final Object checkfn; // check function private long check; // check on output private final InfTree inftree = new InfTree(); InfBlocks(ZStream z, Object checkfn, int w) { hufts = new int[JZlib.MANY * 3]; window = new byte[w]; end = w; this.checkfn = checkfn; mode = TYPE; reset(z, null); } void reset(ZStream z, long[] c) { if (c != null) { c[0] = check; } mode = TYPE; bitk = 0; bitb = 0; read = write = 0; if (checkfn != null) { z.adler = check = Adler32.adler32(0L, null, 0, 0); } } int proc(ZStream z, int r) { int t; // temporary storage int b; // bit buffer int k; // bits in bit buffer int p; // input data pointer int n; // bytes available there int q; // output window write pointer int m; // bytes to end of window or read pointer // copy input/output information to locals (UPDATE macro restores) { p = z.next_in_index; n = z.avail_in; b = bitb; k = bitk; } { q = write; m = q < read? read - q - 1 : end - q; } // process input based on current state while (true) { switch (mode) { case TYPE: while (k < 3) { if (n != 0) { r = JZlib.Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } n --; b |= (z.next_in[p ++] & 0xff) << k; k += 8; } t = b & 7; last = t & 1; switch (t >>> 1) { case 0: // stored { b >>>= 3; k -= 3; } t = k & 7; // go to byte boundary { b >>>= t; k -= t; } mode = LENS; // get length of stored block break; case 1: // fixed { int[] bl = new int[1]; int[] bd = new int[1]; int[][] tl = new int[1][]; int[][] td = new int[1][]; InfTree.inflate_trees_fixed(bl, bd, tl, td); codes.init(bl[0], bd[0], tl[0], 0, td[0], 0); } { b >>>= 3; k -= 3; } mode = CODES; break; case 2: // dynamic { b >>>= 3; k -= 3; } mode = TABLE; break; case 3: // illegal { b >>>= 3; k -= 3; } mode = BAD; z.msg = "invalid block type"; r = JZlib.Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } break; case LENS: while (k < 32) { if (n != 0) { r = JZlib.Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } n --; b |= (z.next_in[p ++] & 0xff) << k; k += 8; } if ((~b >>> 16 & 0xffff) != (b & 0xffff)) { mode = BAD; z.msg = "invalid stored block lengths"; r = JZlib.Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } left = b & 0xffff; b = k = 0; // dump bits mode = left != 0? STORED : last != 0? DRY : TYPE; break; case STORED: if (n == 0) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } if (m == 0) { if (q == end && read != 0) { q = 0; m = q < read? read - q - 1 : end - q; } if (m == 0) { write = q; r = inflate_flush(z, r); q = write; m = q < read? read - q - 1 : end - q; if (q == end && read != 0) { q = 0; m = q < read? read - q - 1 : end - q; } if (m == 0) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } } } r = JZlib.Z_OK; t = left; if (t > n) { t = n; } if (t > m) { t = m; } System.arraycopy(z.next_in, p, window, q, t); p += t; n -= t; q += t; m -= t; if ((left -= t) != 0) { break; } mode = last != 0? DRY : TYPE; break; case TABLE: while (k < 14) { if (n != 0) { r = JZlib.Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } n --; b |= (z.next_in[p ++] & 0xff) << k; k += 8; } table = t = b & 0x3fff; if ((t & 0x1f) > 29 || (t >> 5 & 0x1f) > 29) { mode = BAD; z.msg = "too many length or distance symbols"; r = JZlib.Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } t = 258 + (t & 0x1f) + (t >> 5 & 0x1f); if (blens == null || blens.length < t) { blens = new int[t]; } else { for (int i = 0; i < t; i ++) { blens[i] = 0; } } { b >>>= 14; k -= 14; } index = 0; mode = BTREE; case BTREE: while (index < 4 + (table >>> 10)) { while (k < 3) { if (n != 0) { r = JZlib.Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } n --; b |= (z.next_in[p ++] & 0xff) << k; k += 8; } blens[border[index ++]] = b & 7; { b >>>= 3; k -= 3; } } while (index < 19) { blens[border[index ++]] = 0; } bb[0] = 7; t = inftree.inflate_trees_bits(blens, bb, tb, hufts, z); if (t != JZlib.Z_OK) { r = t; if (r == JZlib.Z_DATA_ERROR) { blens = null; mode = BAD; } bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } index = 0; mode = DTREE; case DTREE: while (true) { t = table; if (!(index < 258 + (t & 0x1f) + (t >> 5 & 0x1f))) { break; } int i, j, c; t = bb[0]; while (k < t) { if (n != 0) { r = JZlib.Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } n --; b |= (z.next_in[p ++] & 0xff) << k; k += 8; } if (tb[0] == -1) { //System.err.println("null..."); } t = hufts[(tb[0] + (b & inflate_mask[t])) * 3 + 1]; c = hufts[(tb[0] + (b & inflate_mask[t])) * 3 + 2]; if (c < 16) { b >>>= t; k -= t; blens[index ++] = c; } else { // c == 16..18 i = c == 18? 7 : c - 14; j = c == 18? 11 : 3; while (k < t + i) { if (n != 0) { r = JZlib.Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } n --; b |= (z.next_in[p ++] & 0xff) << k; k += 8; } b >>>= t; k -= t; j += b & inflate_mask[i]; b >>>= i; k -= i; i = index; t = table; if (i + j > 258 + (t & 0x1f) + (t >> 5 & 0x1f) || c == 16 && i < 1) { blens = null; mode = BAD; z.msg = "invalid bit length repeat"; r = JZlib.Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } c = c == 16? blens[i - 1] : 0; do { blens[i ++] = c; } while (-- j != 0); index = i; } } tb[0] = -1; { int[] bl = new int[1]; int[] bd = new int[1]; int[] tl = new int[1]; int[] td = new int[1]; bl[0] = 9; // must be <= 9 for lookahead assumptions bd[0] = 6; // must be <= 9 for lookahead assumptions t = table; t = inftree.inflate_trees_dynamic(257 + (t & 0x1f), 1 + (t >> 5 & 0x1f), blens, bl, bd, tl, td, hufts, z); if (t != JZlib.Z_OK) { if (t == JZlib.Z_DATA_ERROR) { blens = null; mode = BAD; } r = t; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } codes.init(bl[0], bd[0], hufts, tl[0], hufts, td[0]); } mode = CODES; case CODES: bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; if ((r = codes.proc(this, z, r)) != JZlib.Z_STREAM_END) { return inflate_flush(z, r); } r = JZlib.Z_OK; p = z.next_in_index; n = z.avail_in; b = bitb; k = bitk; q = write; m = q < read? read - q - 1 : end - q; if (last == 0) { mode = TYPE; break; } mode = DRY; case DRY: write = q; r = inflate_flush(z, r); q = write; if (read != write) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } mode = DONE; case DONE: r = JZlib.Z_STREAM_END; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); case BAD: r = JZlib.Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); default: r = JZlib.Z_STREAM_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } } } void free(ZStream z) { reset(z, null); window = null; hufts = null; //ZFREE(z, s); } void set_dictionary(byte[] d, int start, int n) { System.arraycopy(d, start, window, 0, n); read = write = n; } // Returns true if inflate is currently at the end of a block generated // by Z_SYNC_FLUSH or Z_FULL_FLUSH. int sync_point() { return mode == LENS? 1 : 0; } // copy as much as possible from the sliding window to the output area int inflate_flush(ZStream z, int r) { int n; int p; int q; // local copies of source and destination pointers p = z.next_out_index; q = read; // compute number of bytes to copy as far as end of window n = (q <= write? write : end) - q; if (n > z.avail_out) { n = z.avail_out; } if (n != 0 && r == JZlib.Z_BUF_ERROR) { r = JZlib.Z_OK; } // update counters z.avail_out -= n; z.total_out += n; // update check information if (checkfn != null) { z.adler = check = Adler32.adler32(check, window, q, n); } // copy as far as end of window System.arraycopy(window, q, z.next_out, p, n); p += n; q += n; // see if more to copy at beginning of window if (q == end) { // wrap pointers q = 0; if (write == end) { write = 0; } // compute bytes to copy n = write - q; if (n > z.avail_out) { n = z.avail_out; } if (n != 0 && r == JZlib.Z_BUF_ERROR) { r = JZlib.Z_OK; } // update counters z.avail_out -= n; z.total_out += n; // update check information if (checkfn != null) { z.adler = check = Adler32.adler32(check, window, q, n); } // copy System.arraycopy(window, q, z.next_out, p, n); p += n; q += n; } // update pointers z.next_out_index = p; read = q; // done return r; } }