/******************************************************************************* * Copyright (c) 2000, 2010 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package org.eclipse.jdt.core.search; import java.io.IOException; import org.eclipse.core.runtime.IProgressMonitor; import org.eclipse.core.runtime.OperationCanceledException; import org.eclipse.jdt.core.*; import org.eclipse.jdt.core.compiler.*; import org.eclipse.jdt.internal.compiler.classfmt.ClassFileConstants; import org.eclipse.jdt.internal.compiler.env.AccessRuleSet; import org.eclipse.jdt.internal.compiler.parser.Scanner; import org.eclipse.jdt.internal.compiler.parser.ScannerHelper; import org.eclipse.jdt.internal.compiler.parser.TerminalTokens; import org.eclipse.jdt.internal.core.LocalVariable; import org.eclipse.jdt.internal.core.index.EntryResult; import org.eclipse.jdt.internal.core.index.Index; import org.eclipse.jdt.internal.core.search.HierarchyScope; import org.eclipse.jdt.internal.core.search.IndexQueryRequestor; import org.eclipse.jdt.internal.core.search.JavaSearchScope; import org.eclipse.jdt.internal.core.search.StringOperation; import org.eclipse.jdt.internal.core.search.indexing.IIndexConstants; import org.eclipse.jdt.internal.core.search.matching.*; /** * A search pattern defines how search results are found. Use <code>SearchPattern.createPattern</code> * to create a search pattern. * <p> * Search patterns are used during the search phase to decode index entries that were added during the indexing phase * (see {@link SearchDocument#addIndexEntry(char[], char[])}). When an index is queried, the * index categories and keys to consider are retrieved from the search pattern using {@link #getIndexCategories()} and * {@link #getIndexKey()}, as well as the match rule (see {@link #getMatchRule()}). A blank pattern is * then created (see {@link #getBlankPattern()}). This blank pattern is used as a record as follows. * For each index entry in the given index categories and that starts with the given key, the blank pattern is fed using * {@link #decodeIndexKey(char[])}. The original pattern is then asked if it matches the decoded key using * {@link #matchesDecodedKey(SearchPattern)}. If it matches, a search document is created for this index entry * using {@link SearchParticipant#getDocument(String)}. * * </p><p> * This class is intended to be sub-classed by clients. A default behavior is provided for each of the methods above, that * clients can override if they wish. * </p> * @see #createPattern(org.eclipse.jdt.core.IJavaElement, int) * @see #createPattern(String, int, int, int) * @since 3.0 */ public abstract class SearchPattern { // Rules for pattern matching: (exact, prefix, pattern) [ | case sensitive] /** * Match rule: The search pattern matches exactly the search result, * that is, the source of the search result equals the search pattern. */ public static final int R_EXACT_MATCH = 0; /** * Match rule: The search pattern is a prefix of the search result. */ public static final int R_PREFIX_MATCH = 0x0001; /** * Match rule: The search pattern contains one or more wild cards ('*' or '?'). * A '*' wild-card can replace 0 or more characters in the search result. * A '?' wild-card replaces exactly 1 character in the search result. */ public static final int R_PATTERN_MATCH = 0x0002; /** * Match rule: The search pattern contains a regular expression. */ public static final int R_REGEXP_MATCH = 0x0004; /** * Match rule: The search pattern matches the search result only if cases are the same. * Can be combined to previous rules, e.g. {@link #R_EXACT_MATCH} | {@link #R_CASE_SENSITIVE} */ public static final int R_CASE_SENSITIVE = 0x0008; /** * Match rule: The search pattern matches search results as raw/parameterized types/methods with same erasure. * This mode has no effect on other java elements search.<br> * Type search example: * <ul> * <li>pattern: <code>List<Exception></code></li> * <li>match: <code>List<Object></code></li> * </ul> * Method search example: * <ul> * <li>declaration: <code><T>foo(T t)</code></li> * <li>pattern: <code><Exception>foo(new Exception())</code></li> * <li>match: <code><Object>foo(new Object())</code></li> * </ul> * Can be combined to all other match rules, e.g. {@link #R_CASE_SENSITIVE} | {@link #R_ERASURE_MATCH} * This rule is not activated by default, so raw types or parameterized types with same erasure will not be found * for pattern List<String>, * Note that with this pattern, the match selection will be only on the erasure even for parameterized types. * @since 3.1 */ public static final int R_ERASURE_MATCH = 0x0010; /** * Match rule: The search pattern matches search results as raw/parameterized types/methods with equivalent type parameters. * This mode has no effect on other java elements search.<br> * Type search example: * <ul> * <li>pattern: <code>List<Exception></code></li> * <li>match: * <ul> * <li><code>List<? extends Throwable></code></li> * <li><code>List<? super RuntimeException></code></li> * <li><code>List<?></code></li> * </ul> * </li> * </ul> * Method search example: * <ul> * <li>declaration: <code><T>foo(T t)</code></li> * <li>pattern: <code><Exception>foo(new Exception())</code></li> * <li>match: * <ul> * <li><code><? extends Throwable>foo(new Exception())</code></li> * <li><code><? super RuntimeException>foo(new Exception())</code></li> * <li><code>foo(new Exception())</code></li> * </ul> * </ul> * Can be combined to all other match rules, e.g. {@link #R_CASE_SENSITIVE} | {@link #R_EQUIVALENT_MATCH} * This rule is not activated by default, so raw types or equivalent parameterized types will not be found * for pattern List<String>, * This mode is overridden by {@link #R_ERASURE_MATCH} as erasure matches obviously include equivalent ones. * That means that pattern with rule set to {@link #R_EQUIVALENT_MATCH} | {@link #R_ERASURE_MATCH} * will return same results than rule only set with {@link #R_ERASURE_MATCH}. * @since 3.1 */ public static final int R_EQUIVALENT_MATCH = 0x0020; /** * Match rule: The search pattern matches exactly the search result, * that is, the source of the search result equals the search pattern. * @since 3.1 */ public static final int R_FULL_MATCH = 0x0040; /** * Match rule: The search pattern contains a Camel Case expression. * <p> * Examples: * <ul> * <li>'NPE' type string pattern will match * 'NullPointerException' and 'NoPermissionException' types,</li> * <li>'NuPoEx' type string pattern will only match * 'NullPointerException' type.</li> * </ul> * * This rule is not intended to be combined with any other match rule. In case * of other match rule flags are combined with this one, then match rule validation * will return a modified rule in order to perform a better appropriate search request * (see {@link #validateMatchRule(String, int)} for more details). * <p> * @see #camelCaseMatch(String, String) for a detailed explanation of Camel * Case matching. * * @since 3.2 */ public static final int R_CAMELCASE_MATCH = 0x0080; /** * Match rule: The search pattern contains a Camel Case expression with * a strict expected number of parts. * <br> * Examples: * <ul> * <li>'HM' type string pattern will match 'HashMap' and 'HtmlMapper' types, * but not 'HashMapEntry' * </li> * <li>'HMap' type string pattern will still match previous 'HashMap' and * 'HtmlMapper' types, but not 'HighMagnitude' * </li> * </ul> * * This rule is not intended to be combined with any other match rule. In case * of other match rule flags are combined with this one, then match rule validation * will return a modified rule in order to perform a better appropriate search request * (see {@link #validateMatchRule(String, int)} for more details). * <p> * @see CharOperation#camelCaseMatch(char[], char[], boolean) for a detailed * explanation of Camel Case matching. *<p> * @since 3.4 */ public static final int R_CAMELCASE_SAME_PART_COUNT_MATCH = 0x0100; private static final int MODE_MASK = R_EXACT_MATCH | R_PREFIX_MATCH | R_PATTERN_MATCH | R_REGEXP_MATCH | R_CAMELCASE_MATCH | R_CAMELCASE_SAME_PART_COUNT_MATCH; private int matchRule; /** * The focus element (used for reference patterns) * @noreference This field is not intended to be referenced by clients. */ public IJavaElement focus; /** * @noreference This field is not intended to be referenced by clients. */ public int kind; /** * @noreference This field is not intended to be referenced by clients. */ public boolean mustResolve = true; /** * Creates a search pattern with the rule to apply for matching index keys. * It can be exact match, prefix match, pattern match or regexp match. * Rule can also be combined with a case sensitivity flag. * * @param matchRule one of following match rule * <ul> * <li>{@link #R_EXACT_MATCH}</li> * <li>{@link #R_PREFIX_MATCH}</li> * <li>{@link #R_PATTERN_MATCH}</li> * <li>{@link #R_REGEXP_MATCH}</li> * <li>{@link #R_CAMELCASE_MATCH}</li> * <li>{@link #R_CAMELCASE_SAME_PART_COUNT_MATCH}</li> * </ul> * which may be also combined with one of following flag: * <ul> * <li>{@link #R_CASE_SENSITIVE}</li> * <li>{@link #R_ERASURE_MATCH}</li> * <li>{@link #R_EQUIVALENT_MATCH}</li> * </ul> * For example, * <ul> * <li>{@link #R_EXACT_MATCH} | {@link #R_CASE_SENSITIVE}: if an exact * and case sensitive match is requested,</li> * <li>{@link #R_PREFIX_MATCH} if a case insensitive prefix match is requested</li> * <li>{@link #R_EXACT_MATCH} | {@link #R_ERASURE_MATCH}: if a case * insensitive and erasure match is requested.</li> * </ul> * Note that {@link #R_ERASURE_MATCH} or {@link #R_EQUIVALENT_MATCH} has no effect * on non-generic types/methods search. * <p> * Note also that default behavior for generic types/methods search is to find exact matches. */ public SearchPattern(int matchRule) { this.matchRule = matchRule; // Set full match implicit mode if ((matchRule & (R_EQUIVALENT_MATCH | R_ERASURE_MATCH )) == 0) { this.matchRule |= R_FULL_MATCH; } // reset other incompatible flags if ((matchRule & R_CAMELCASE_MATCH) != 0) { this.matchRule &= ~R_CAMELCASE_SAME_PART_COUNT_MATCH; this.matchRule &= ~R_PREFIX_MATCH; } else if ((matchRule & R_CAMELCASE_SAME_PART_COUNT_MATCH) != 0) { this.matchRule &= ~R_PREFIX_MATCH; } } /** * @noreference This method is not intended to be referenced by clients. * @nooverride This method is not intended to be re-implemented or extended by clients. */ public void acceptMatch(String relativePath, String containerPath, char separator, SearchPattern pattern, IndexQueryRequestor requestor, SearchParticipant participant, IJavaSearchScope scope) { acceptMatch(relativePath, containerPath, separator, pattern, requestor, participant, scope, null); } /** * @noreference This method is not intended to be referenced by clients. * @nooverride This method is not intended to be re-implemented or extended by clients. */ public void acceptMatch(String relativePath, String containerPath, char separator, SearchPattern pattern, IndexQueryRequestor requestor, SearchParticipant participant, IJavaSearchScope scope, IProgressMonitor monitor) { if (scope instanceof JavaSearchScope) { JavaSearchScope javaSearchScope = (JavaSearchScope) scope; // Get document path access restriction from java search scope // Note that requestor has to verify if needed whether the document violates the access restriction or not AccessRuleSet access = javaSearchScope.getAccessRuleSet(relativePath, containerPath); if (access != JavaSearchScope.NOT_ENCLOSED) { // scope encloses the document path StringBuffer documentPath = new StringBuffer(containerPath.length() + 1 + relativePath.length()); documentPath.append(containerPath); documentPath.append(separator); documentPath.append(relativePath); if (!requestor.acceptIndexMatch(documentPath.toString(), pattern, participant, access)) throw new OperationCanceledException(); } } else { StringBuffer buffer = new StringBuffer(containerPath.length() + 1 + relativePath.length()); buffer.append(containerPath); buffer.append(separator); buffer.append(relativePath); String documentPath = buffer.toString(); boolean encloses = (scope instanceof HierarchyScope) ? ((HierarchyScope)scope).encloses(documentPath, monitor) : scope.encloses(documentPath); if (encloses) if (!requestor.acceptIndexMatch(documentPath, pattern, participant, null)) throw new OperationCanceledException(); } } /** * @noreference This method is not intended to be referenced by clients. * @nooverride This method is not intended to be re-implemented or extended by clients. */ public SearchPattern currentPattern() { return this; } /** * Answers true if the pattern matches the given name using CamelCase rules, or * false otherwise. char[] CamelCase matching does NOT accept explicit wild-cards * '*' and '?' and is inherently case sensitive. * <p> * CamelCase denotes the convention of writing compound names without spaces, * and capitalizing every term. This function recognizes both upper and lower * CamelCase, depending whether the leading character is capitalized or not. * The leading part of an upper CamelCase pattern is assumed to contain a * sequence of capitals which are appearing in the matching name; e.g. 'NPE' will * match 'NullPointerException', but not 'NewPerfData'. A lower CamelCase pattern * uses a lowercase first character. In Java, type names follow the upper * CamelCase convention, whereas method or field names follow the lower * CamelCase convention. * <p> * The pattern may contain lowercase characters, which will be matched in a case * sensitive way. These characters must appear in sequence in the name. * For instance, 'NPExcep' will match 'NullPointerException', but not * 'NullPointerExCEPTION' or 'NuPoEx' will match 'NullPointerException', but not * 'NoPointerException'. * <p> * Digit characters are treated in a special way. They can be used in the pattern * but are not always considered as leading character. For instance, both * 'UTF16DSS' and 'UTFDSS' patterns will match 'UTF16DocumentScannerSupport'. * <p> * Using this method allows matching names to have more parts than the specified * pattern (see {@link #camelCaseMatch(String, String, boolean)}).<br> * For instance, 'HM' , 'HaMa' and 'HMap' patterns will match 'HashMap', * 'HatMapper' <b>and also</b> 'HashMapEntry'. * <p> * <pre> * Examples: * <ol><li> pattern = "NPE" * name = NullPointerException / NoPermissionException * result => true</li> * <li> pattern = "NuPoEx" * name = NullPointerException * result => true</li> * <li> pattern = "npe" * name = NullPointerException * result => false</li> * <li> pattern = "IPL3" * name = "IPerspectiveListener3" * result => true</li> * <li> pattern = "HM" * name = "HashMapEntry" * result => true</li> * <li> pattern = "HMap" * name = "HatMapper" * result => true</li> * </ol></pre> * * @see #camelCaseMatch(String, int, int, String, int, int, boolean) for algorithm * implementation * * @param pattern the given pattern * @param name the given name * @return true if the pattern matches the given name, false otherwise * @since 3.2 */ public static final boolean camelCaseMatch(String pattern, String name) { if (pattern == null) return true; // null pattern is equivalent to '*' if (name == null) return false; // null name cannot match return camelCaseMatch(pattern, 0, pattern.length(), name, 0, name.length(), false/*not the same count of parts*/); } /** * Answers true if the pattern matches the given name using CamelCase rules, or * false otherwise. char[] CamelCase matching does NOT accept explicit wild-cards * '*' and '?' and is inherently case sensitive. * <p> * CamelCase denotes the convention of writing compound names without spaces, * and capitalizing every term. This function recognizes both upper and lower * CamelCase, depending whether the leading character is capitalized or not. * The leading part of an upper CamelCase pattern is assumed to contain a * sequence of capitals which are appearing in the matching name; e.g. 'NPE' will * match 'NullPointerException', but not 'NewPerfData'. A lower CamelCase pattern * uses a lowercase first character. In Java, type names follow the upper * CamelCase convention, whereas method or field names follow the lower * CamelCase convention. * <p> * The pattern may contain lowercase characters, which will be matched in a case * sensitive way. These characters must appear in sequence in the name. * For instance, 'NPExcep' will match 'NullPointerException', but not * 'NullPointerExCEPTION' or 'NuPoEx' will match 'NullPointerException', but not * 'NoPointerException'. * <p> * Digit characters are treated in a special way. They can be used in the pattern * but are not always considered as leading character. For instance, both * 'UTF16DSS' and 'UTFDSS' patterns will match 'UTF16DocumentScannerSupport'. * <p> * CamelCase can be restricted to match only the same count of parts. When this * restriction is specified the given pattern and the given name must have <b>exactly</b> * the same number of parts (i.e. the same number of uppercase characters).<br> * For instance, 'HM' , 'HaMa' and 'HMap' patterns will match 'HashMap' and * 'HatMapper' <b>but not</b> 'HashMapEntry'. * <p> * <pre> * Examples: * <ol><li> pattern = "NPE" * name = NullPointerException / NoPermissionException * result => true</li> * <li> pattern = "NuPoEx" * name = NullPointerException * result => true</li> * <li> pattern = "npe" * name = NullPointerException * result => false</li> * <li> pattern = "IPL3" * name = "IPerspectiveListener3" * result => true</li> * <li> pattern = "HM" * name = "HashMapEntry" * result => (samePartCount == false)</li> * </ol></pre> * * @see #camelCaseMatch(String, int, int, String, int, int, boolean) for algorithm * implementation * * @param pattern the given pattern * @param name the given name * @param samePartCount flag telling whether the pattern and the name should * have the same count of parts or not.<br> *   For example: * <ul> * <li>'HM' type string pattern will match 'HashMap' and 'HtmlMapper' types, * but not 'HashMapEntry'</li> * <li>'HMap' type string pattern will still match previous 'HashMap' and * 'HtmlMapper' types, but not 'HighMagnitude'</li> * </ul> * @return true if the pattern matches the given name, false otherwise * @since 3.4 */ public static final boolean camelCaseMatch(String pattern, String name, boolean samePartCount) { if (pattern == null) return true; // null pattern is equivalent to '*' if (name == null) return false; // null name cannot match return camelCaseMatch(pattern, 0, pattern.length(), name, 0, name.length(), samePartCount); } /** * Answers true if a sub-pattern matches the sub-part of the given name using * CamelCase rules, or false otherwise. char[] CamelCase matching does NOT * accept explicit wild-cards '*' and '?' and is inherently case sensitive. * Can match only subset of name/pattern, considering end positions as non-inclusive. * The sub-pattern is defined by the patternStart and patternEnd positions. * <p> * CamelCase denotes the convention of writing compound names without spaces, * and capitalizing every term. This function recognizes both upper and lower * CamelCase, depending whether the leading character is capitalized or not. * The leading part of an upper CamelCase pattern is assumed to contain a * sequence of capitals which are appearing in the matching name; e.g. 'NPE' will * match 'NullPointerException', but not 'NewPerfData'. A lower CamelCase pattern * uses a lowercase first character. In Java, type names follow the upper * CamelCase convention, whereas method or field names follow the lower * CamelCase convention. * <p> * The pattern may contain lowercase characters, which will be matched in a case * sensitive way. These characters must appear in sequence in the name. * For instance, 'NPExcep' will match 'NullPointerException', but not * 'NullPointerExCEPTION' or 'NuPoEx' will match 'NullPointerException', but not * 'NoPointerException'. * <p> * Digit characters are treated in a special way. They can be used in the pattern * but are not always considered as leading character. For instance, both * 'UTF16DSS' and 'UTFDSS' patterns will match 'UTF16DocumentScannerSupport'. * <p> * Digit characters are treated in a special way. They can be used in the pattern * but are not always considered as leading character. For instance, both * 'UTF16DSS' and 'UTFDSS' patterns will match 'UTF16DocumentScannerSupport'. * <p> * Using this method allows matching names to have more parts than the specified * pattern (see {@link #camelCaseMatch(String, int, int, String, int, int, boolean)}).<br> * For instance, 'HM' , 'HaMa' and 'HMap' patterns will match 'HashMap', * 'HatMapper' <b>and also</b> 'HashMapEntry'. * <p> * <pre>Examples:<ol> * <li> pattern = "NPE" * patternStart = 0 * patternEnd = 3 * name = NullPointerException * nameStart = 0 * nameEnd = 20 * result => true</li> * <li> pattern = "NPE" * patternStart = 0 * patternEnd = 3 * name = NoPermissionException * nameStart = 0 * nameEnd = 21 * result => true</li> * <li> pattern = "NuPoEx" * patternStart = 0 * patternEnd = 6 * name = NullPointerException * nameStart = 0 * nameEnd = 20 * result => true</li> * <li> pattern = "NuPoEx" * patternStart = 0 * patternEnd = 6 * name = NoPermissionException * nameStart = 0 * nameEnd = 21 * result => false</li> * <li> pattern = "npe" * patternStart = 0 * patternEnd = 3 * name = NullPointerException * nameStart = 0 * nameEnd = 20 * result => false</li> * <li> pattern = "IPL3" * patternStart = 0 * patternEnd = 3 * name = "IPerspectiveListener3" * nameStart = 0 * nameEnd = 21 * result => true</li> * <li> pattern = "HM" * patternStart = 0 * patternEnd = 2 * name = "HashMapEntry" * nameStart = 0 * nameEnd = 12 * result => true</li> * <li> pattern = "HMap" * patternStart = 0 * patternEnd = 4 * name = "HatMapper" * nameStart = 0 * nameEnd = 9 * result => true</li> * </ol></pre> * * @param pattern the given pattern * @param patternStart the start index of the pattern, inclusive * @param patternEnd the end index of the pattern, exclusive * @param name the given name * @param nameStart the start index of the name, inclusive * @param nameEnd the end index of the name, exclusive * @return true if a sub-pattern matches the sub-part of the given name, false otherwise * @since 3.2 */ public static final boolean camelCaseMatch(String pattern, int patternStart, int patternEnd, String name, int nameStart, int nameEnd) { return camelCaseMatch(pattern, patternStart, patternEnd, name, nameStart, nameEnd, false/*not the same count of parts*/); } /** * Answers true if a sub-pattern matches the sub-part of the given name using * CamelCase rules, or false otherwise. char[] CamelCase matching does NOT * accept explicit wild-cards '*' and '?' and is inherently case sensitive. * Can match only subset of name/pattern, considering end positions as * non-inclusive. The sub-pattern is defined by the patternStart and patternEnd * positions. * <p> * CamelCase denotes the convention of writing compound names without spaces, * and capitalizing every term. This function recognizes both upper and lower * CamelCase, depending whether the leading character is capitalized or not. * The leading part of an upper CamelCase pattern is assumed to contain * a sequence of capitals which are appearing in the matching name; e.g. 'NPE' will * match 'NullPointerException', but not 'NewPerfData'. A lower CamelCase pattern * uses a lowercase first character. In Java, type names follow the upper * CamelCase convention, whereas method or field names follow the lower * CamelCase convention. * <p> * The pattern may contain lowercase characters, which will be matched in a case * sensitive way. These characters must appear in sequence in the name. * For instance, 'NPExcep' will match 'NullPointerException', but not * 'NullPointerExCEPTION' or 'NuPoEx' will match 'NullPointerException', but not * 'NoPointerException'. * <p> * Digit characters are treated in a special way. They can be used in the pattern * but are not always considered as leading character. For instance, both * 'UTF16DSS' and 'UTFDSS' patterns will match 'UTF16DocumentScannerSupport'. * <p> * CamelCase can be restricted to match only the same count of parts. When this * restriction is specified the given pattern and the given name must have <b>exactly</b> * the same number of parts (i.e. the same number of uppercase characters).<br> * For instance, 'HM' , 'HaMa' and 'HMap' patterns will match 'HashMap' and * 'HatMapper' <b>but not</b> 'HashMapEntry'. * <p> * <pre>Examples:<ol> * <li> pattern = "NPE" * patternStart = 0 * patternEnd = 3 * name = NullPointerException * nameStart = 0 * nameEnd = 20 * result => true</li> * <li> pattern = "NPE" * patternStart = 0 * patternEnd = 3 * name = NoPermissionException * nameStart = 0 * nameEnd = 21 * result => true</li> * <li> pattern = "NuPoEx" * patternStart = 0 * patternEnd = 6 * name = NullPointerException * nameStart = 0 * nameEnd = 20 * result => true</li> * <li> pattern = "NuPoEx" * patternStart = 0 * patternEnd = 6 * name = NoPermissionException * nameStart = 0 * nameEnd = 21 * result => false</li> * <li> pattern = "npe" * patternStart = 0 * patternEnd = 3 * name = NullPointerException * nameStart = 0 * nameEnd = 20 * result => false</li> * <li> pattern = "IPL3" * patternStart = 0 * patternEnd = 3 * name = "IPerspectiveListener3" * nameStart = 0 * nameEnd = 21 * result => true</li> * <li> pattern = "HM" * patternStart = 0 * patternEnd = 2 * name = "HashMapEntry" * nameStart = 0 * nameEnd = 12 * result => (samePartCount == false)</li> * </ol></pre> * * @see CharOperation#camelCaseMatch(char[], int, int, char[], int, int, boolean) * from which algorithm implementation has been entirely copied. * * @param pattern the given pattern * @param patternStart the start index of the pattern, inclusive * @param patternEnd the end index of the pattern, exclusive * @param name the given name * @param nameStart the start index of the name, inclusive * @param nameEnd the end index of the name, exclusive * @param samePartCount flag telling whether the pattern and the name should * have the same count of parts or not.<br> *   For example: * <ul> * <li>'HM' type string pattern will match 'HashMap' and 'HtmlMapper' types, * but not 'HashMapEntry'</li> * <li>'HMap' type string pattern will still match previous 'HashMap' and * 'HtmlMapper' types, but not 'HighMagnitude'</li> * </ul> * @return true if a sub-pattern matches the sub-part of the given name, false otherwise * @since 3.4 */ public static final boolean camelCaseMatch(String pattern, int patternStart, int patternEnd, String name, int nameStart, int nameEnd, boolean samePartCount) { return StringOperation.getCamelCaseMatchingRegions(pattern, patternStart, patternEnd, name, nameStart, nameEnd, samePartCount) != null; } /** * Answers all the regions in a given name matching a given pattern using * a specified match rule. * </p><p> * Each of these regions is made of its starting index and its length in the given * name. They are all concatenated in a single array of <code>int</code> * which therefore always has an even length. * </p><p> * All returned regions are disjointed from each other. That means that the end * of a region is always different than the start of the following one.<br> * For example, if two regions are returned:<br> * <code>{ start1, length1, start2, length2 }</code><br> * then <code>start1+length1</code> will always be smaller than * <code>start2</code>. * </p><p> * The possible comparison rules between the name and the pattern are: * <ul> * <li>{@link #R_EXACT_MATCH exact matching}</li> * <li>{@link #R_PREFIX_MATCH prefix matching}</li> * <li>{@link #R_PATTERN_MATCH pattern matching}</li> * <li>{@link #R_CAMELCASE_MATCH camel case matching}</li> * <li>{@link #R_CAMELCASE_SAME_PART_COUNT_MATCH camel case matching with same parts count}</li> * </ul> * Each of these rules may be combined with the * {@link #R_CASE_SENSITIVE case sensitive flag} if the match comparison * should respect the case. * <pre> * Examples: * <ol><li> pattern = "NPE" * name = NullPointerException / NoPermissionException * matchRule = {@link #R_CAMELCASE_MATCH} * result: { 0, 1, 4, 1, 11, 1 } / { 0, 1, 2, 1, 12, 1 } </li> * <li> pattern = "NuPoEx" * name = NullPointerException * matchRule = {@link #R_CAMELCASE_MATCH} * result: { 0, 2, 4, 2, 11, 2 }</li> * <li> pattern = "IPL3" * name = "IPerspectiveListener3" * matchRule = {@link #R_CAMELCASE_MATCH} * result: { 0, 2, 12, 1, 20, 1 }</li> * <li> pattern = "HashME" * name = "HashMapEntry" * matchRule = {@link #R_CAMELCASE_MATCH} * result: { 0, 5, 7, 1 }</li> * <li> pattern = "N???Po*Ex?eption" * name = NullPointerException * matchRule = {@link #R_PATTERN_MATCH} | {@link #R_CASE_SENSITIVE} * result: { 0, 1, 4, 2, 11, 2, 14, 6 }</li> * <li> pattern = "Ha*M*ent*" * name = "HashMapEntry" * matchRule = {@link #R_PATTERN_MATCH} * result: { 0, 2, 4, 1, 7, 3 }</li> * </ol></pre> * * @see #camelCaseMatch(String, String, boolean) for more details on the * camel case behavior * @see CharOperation#match(char[], char[], boolean) for more details on the * pattern match behavior * * @param pattern the given pattern. If <code>null</code>, * then an empty region (<code>new int[0]</code>) will be returned * showing that the name matches the pattern but no common * character has been found. * @param name the given name * @param matchRule the rule to apply for the comparison.<br> * The following values are accepted: * <ul> * <li>{@link #R_EXACT_MATCH}</li> * <li>{@link #R_PREFIX_MATCH}</li> * <li>{@link #R_PATTERN_MATCH}</li> * <li>{@link #R_CAMELCASE_MATCH}</li> * <li>{@link #R_CAMELCASE_SAME_PART_COUNT_MATCH}</li> * </ul> * <p> * Each of these valid values may be also combined with * the {@link #R_CASE_SENSITIVE} flag. * </p> * Some examples: * <ul> * <li>{@link #R_EXACT_MATCH} | {@link #R_CASE_SENSITIVE}: * if an exact case sensitive match is expected,</li> * <li>{@link #R_PREFIX_MATCH}: * if a case insensitive prefix match is expected,</li> * <li>{@link #R_CAMELCASE_MATCH}: * if a case insensitive camel case match is expected,</li> * <li>{@link #R_CAMELCASE_SAME_PART_COUNT_MATCH} * | {@link #R_CASE_SENSITIVE}: * if a case sensitive camel case with same parts count match * is expected,</li> * <li>etc.</li> * </ul> * @return an array of <code>int</code> having two slots per returned * regions (the first one is the region starting index and the second one * is the region length or <code>null</code> if the given name does not * match the given pattern). * <p> * The returned regions may be empty (<code>new int[0]</code>) if the * pattern is <code>null</code> (whatever the match rule is). The returned * regions will also be empty if the pattern is only made of <code>'?'</code> * and/or <code>'*'</code> character(s) (e.g. <code>'*'</code>, * <code>'?*'</code>, <code>'???'</code>, etc.) when using a pattern * match rule. * </p> * * @since 3.5 */ public static final int[] getMatchingRegions(String pattern, String name, int matchRule) { if (name == null) return null; final int nameLength = name.length(); if (pattern == null) { return new int[] { 0, nameLength }; } final int patternLength = pattern.length(); boolean countMatch = false; switch (matchRule) { case SearchPattern.R_EXACT_MATCH: if (patternLength == nameLength && pattern.equalsIgnoreCase(name)) { return new int[] { 0, patternLength }; } break; case SearchPattern.R_EXACT_MATCH | SearchPattern.R_CASE_SENSITIVE: if (patternLength == nameLength && pattern.equals(name)) { return new int[] { 0, patternLength }; } break; case SearchPattern.R_PREFIX_MATCH: if (patternLength <= nameLength && name.substring(0, patternLength).equalsIgnoreCase(pattern)) { return new int[] { 0, patternLength }; } break; case SearchPattern.R_PREFIX_MATCH | SearchPattern.R_CASE_SENSITIVE: if (name.startsWith(pattern)) { return new int[] { 0, patternLength }; } break; case SearchPattern.R_CAMELCASE_SAME_PART_COUNT_MATCH: countMatch = true; //$FALL-THROUGH$ case SearchPattern.R_CAMELCASE_MATCH: if (patternLength <= nameLength) { int[] regions = StringOperation.getCamelCaseMatchingRegions(pattern, 0, patternLength, name, 0, nameLength, countMatch); if (regions != null) return regions; if (name.substring(0, patternLength).equalsIgnoreCase(pattern)) { return new int[] { 0, patternLength }; } } break; case SearchPattern.R_CAMELCASE_SAME_PART_COUNT_MATCH | SearchPattern.R_CASE_SENSITIVE: countMatch = true; //$FALL-THROUGH$ case SearchPattern.R_CAMELCASE_MATCH | SearchPattern.R_CASE_SENSITIVE: if (patternLength <= nameLength) { return StringOperation.getCamelCaseMatchingRegions(pattern, 0, patternLength, name, 0, nameLength, countMatch); } break; case SearchPattern.R_PATTERN_MATCH: return StringOperation.getPatternMatchingRegions(pattern, 0, patternLength, name, 0, nameLength, false); case SearchPattern.R_PATTERN_MATCH | SearchPattern.R_CASE_SENSITIVE: return StringOperation.getPatternMatchingRegions(pattern, 0, patternLength, name, 0, nameLength, true); } return null; } /** * Returns a search pattern that combines the given two patterns into an * "and" pattern. The search result will match both the left pattern and * the right pattern. * * @param leftPattern the left pattern * @param rightPattern the right pattern * @return an "and" pattern * @deprecated Unfortunately, this functionality is not fully supported yet * (see "https://bugs.eclipse.org/bugs/show_bug.cgi?id=142044" for more details). * This might be done in a further version... */ public static SearchPattern createAndPattern(SearchPattern leftPattern, SearchPattern rightPattern) { return new AndPattern(leftPattern, rightPattern); } private static SearchPattern createFieldPattern(String patternString, int limitTo, int matchRule) { Scanner scanner = new Scanner(false /*comment*/, true /*whitespace*/, false /*nls*/, ClassFileConstants.JDK1_3/*sourceLevel*/, null /*taskTags*/, null/*taskPriorities*/, true/*taskCaseSensitive*/); scanner.setSource(patternString.toCharArray()); final int InsideDeclaringPart = 1; final int InsideType = 2; int lastToken = -1; String declaringType = null, fieldName = null; String type = null; int mode = InsideDeclaringPart; int token; try { token = scanner.getNextToken(); } catch (InvalidInputException e) { return null; } while (token != TerminalTokens.TokenNameEOF) { switch(mode) { // read declaring type and fieldName case InsideDeclaringPart : switch (token) { case TerminalTokens.TokenNameDOT: if (declaringType == null) { if (fieldName == null) return null; declaringType = fieldName; } else { String tokenSource = scanner.getCurrentTokenString(); declaringType += tokenSource + fieldName; } fieldName = null; break; case TerminalTokens.TokenNameWHITESPACE: if (!(TerminalTokens.TokenNameWHITESPACE == lastToken || TerminalTokens.TokenNameDOT == lastToken)) mode = InsideType; break; default: // all other tokens are considered identifiers (see bug 21763 Problem in Java search [search]) if (fieldName == null) fieldName = scanner.getCurrentTokenString(); else fieldName += scanner.getCurrentTokenString(); } break; // read type case InsideType: switch (token) { case TerminalTokens.TokenNameWHITESPACE: break; default: // all other tokens are considered identifiers (see bug 21763 Problem in Java search [search]) if (type == null) type = scanner.getCurrentTokenString(); else type += scanner.getCurrentTokenString(); } break; } lastToken = token; try { token = scanner.getNextToken(); } catch (InvalidInputException e) { return null; } } if (fieldName == null) return null; char[] fieldNameChars = fieldName.toCharArray(); if (fieldNameChars.length == 1 && fieldNameChars[0] == '*') fieldNameChars = null; char[] declaringTypeQualification = null, declaringTypeSimpleName = null; char[] typeQualification = null, typeSimpleName = null; // extract declaring type infos if (declaringType != null) { char[] declaringTypePart = declaringType.toCharArray(); int lastDotPosition = CharOperation.lastIndexOf('.', declaringTypePart); if (lastDotPosition >= 0) { declaringTypeQualification = CharOperation.subarray(declaringTypePart, 0, lastDotPosition); if (declaringTypeQualification.length == 1 && declaringTypeQualification[0] == '*') declaringTypeQualification = null; declaringTypeSimpleName = CharOperation.subarray(declaringTypePart, lastDotPosition+1, declaringTypePart.length); } else { declaringTypeSimpleName = declaringTypePart; } if (declaringTypeSimpleName.length == 1 && declaringTypeSimpleName[0] == '*') declaringTypeSimpleName = null; } // extract type infos if (type != null) { char[] typePart = type.toCharArray(); int lastDotPosition = CharOperation.lastIndexOf('.', typePart); if (lastDotPosition >= 0) { typeQualification = CharOperation.subarray(typePart, 0, lastDotPosition); if (typeQualification.length == 1 && typeQualification[0] == '*') { typeQualification = null; } else { // prefix with a '*' as the full qualification could be bigger (because of an import) typeQualification = CharOperation.concat(IIndexConstants.ONE_STAR, typeQualification); } typeSimpleName = CharOperation.subarray(typePart, lastDotPosition+1, typePart.length); } else { typeSimpleName = typePart; } if (typeSimpleName.length == 1 && typeSimpleName[0] == '*') typeSimpleName = null; } // Create field pattern return new FieldPattern( fieldNameChars, declaringTypeQualification, declaringTypeSimpleName, typeQualification, typeSimpleName, limitTo, matchRule); } private static SearchPattern createMethodOrConstructorPattern(String patternString, int limitTo, int matchRule, boolean isConstructor) { Scanner scanner = new Scanner(false /*comment*/, true /*whitespace*/, false /*nls*/, ClassFileConstants.JDK1_3/*sourceLevel*/, null /*taskTags*/, null/*taskPriorities*/, true/*taskCaseSensitive*/); scanner.setSource(patternString.toCharArray()); final int InsideSelector = 1; final int InsideTypeArguments = 2; final int InsideParameter = 3; final int InsideReturnType = 4; int lastToken = -1; String declaringType = null, selector = null, parameterType = null; String[] parameterTypes = null; char[][] typeArguments = null; String typeArgumentsString = null; int parameterCount = -1; String returnType = null; boolean foundClosingParenthesis = false; int mode = InsideSelector; int token, argCount = 0; try { token = scanner.getNextToken(); } catch (InvalidInputException e) { return null; } while (token != TerminalTokens.TokenNameEOF) { switch(mode) { // read declaring type and selector case InsideSelector : if (argCount == 0) { switch (token) { case TerminalTokens.TokenNameLESS: argCount++; if (selector == null || lastToken == TerminalTokens.TokenNameDOT) { typeArgumentsString = scanner.getCurrentTokenString(); mode = InsideTypeArguments; break; } if (declaringType == null) { declaringType = selector; } else { declaringType += '.' + selector; } declaringType += scanner.getCurrentTokenString(); selector = null; break; case TerminalTokens.TokenNameDOT: if (!isConstructor && typeArgumentsString != null) return null; // invalid syntax if (declaringType == null) { if (selector == null) return null; // invalid syntax declaringType = selector; } else if (selector != null) { declaringType += scanner.getCurrentTokenString() + selector; } selector = null; break; case TerminalTokens.TokenNameLPAREN: parameterTypes = new String[5]; parameterCount = 0; mode = InsideParameter; break; case TerminalTokens.TokenNameWHITESPACE: switch (lastToken) { case TerminalTokens.TokenNameWHITESPACE: case TerminalTokens.TokenNameDOT: case TerminalTokens.TokenNameGREATER: case TerminalTokens.TokenNameRIGHT_SHIFT: case TerminalTokens.TokenNameUNSIGNED_RIGHT_SHIFT: break; default: mode = InsideReturnType; break; } break; default: // all other tokens are considered identifiers (see bug 21763 Problem in Java search [search]) if (selector == null) selector = scanner.getCurrentTokenString(); else selector += scanner.getCurrentTokenString(); break; } } else { if (declaringType == null) return null; // invalid syntax switch (token) { case TerminalTokens.TokenNameGREATER: case TerminalTokens.TokenNameRIGHT_SHIFT: case TerminalTokens.TokenNameUNSIGNED_RIGHT_SHIFT: argCount--; break; case TerminalTokens.TokenNameLESS: argCount++; break; } declaringType += scanner.getCurrentTokenString(); } break; // read type arguments case InsideTypeArguments: if (typeArgumentsString == null) return null; // invalid syntax typeArgumentsString += scanner.getCurrentTokenString(); switch (token) { case TerminalTokens.TokenNameGREATER: case TerminalTokens.TokenNameRIGHT_SHIFT: case TerminalTokens.TokenNameUNSIGNED_RIGHT_SHIFT: argCount--; if (argCount == 0) { String pseudoType = "Type"+typeArgumentsString; //$NON-NLS-1$ typeArguments = Signature.getTypeArguments(Signature.createTypeSignature(pseudoType, false).toCharArray()); mode = InsideSelector; } break; case TerminalTokens.TokenNameLESS: argCount++; break; } break; // read parameter types case InsideParameter : if (argCount == 0) { switch (token) { case TerminalTokens.TokenNameWHITESPACE: break; case TerminalTokens.TokenNameCOMMA: if (parameterType == null) return null; if (parameterTypes != null) { if (parameterTypes.length == parameterCount) System.arraycopy(parameterTypes, 0, parameterTypes = new String[parameterCount*2], 0, parameterCount); parameterTypes[parameterCount++] = parameterType; } parameterType = null; break; case TerminalTokens.TokenNameRPAREN: foundClosingParenthesis = true; if (parameterType != null && parameterTypes != null) { if (parameterTypes.length == parameterCount) System.arraycopy(parameterTypes, 0, parameterTypes = new String[parameterCount*2], 0, parameterCount); parameterTypes[parameterCount++] = parameterType; } mode = isConstructor ? InsideTypeArguments : InsideReturnType; break; case TerminalTokens.TokenNameLESS: argCount++; if (parameterType == null) return null; // invalid syntax // $FALL-THROUGH$ - fall through next case to add token default: // all other tokens are considered identifiers (see bug 21763 Problem in Java search [search]) if (parameterType == null) parameterType = scanner.getCurrentTokenString(); else parameterType += scanner.getCurrentTokenString(); } } else { if (parameterType == null) return null; // invalid syntax switch (token) { case TerminalTokens.TokenNameGREATER: case TerminalTokens.TokenNameRIGHT_SHIFT: case TerminalTokens.TokenNameUNSIGNED_RIGHT_SHIFT: argCount--; break; case TerminalTokens.TokenNameLESS: argCount++; break; } parameterType += scanner.getCurrentTokenString(); } break; // read return type case InsideReturnType: if (argCount == 0) { switch (token) { case TerminalTokens.TokenNameWHITESPACE: break; case TerminalTokens.TokenNameLPAREN: parameterTypes = new String[5]; parameterCount = 0; mode = InsideParameter; break; case TerminalTokens.TokenNameLESS: argCount++; if (returnType == null) return null; // invalid syntax // $FALL-THROUGH$ - fall through next case to add token default: // all other tokens are considered identifiers (see bug 21763 Problem in Java search [search]) if (returnType == null) returnType = scanner.getCurrentTokenString(); else returnType += scanner.getCurrentTokenString(); } } else { if (returnType == null) return null; // invalid syntax switch (token) { case TerminalTokens.TokenNameGREATER: case TerminalTokens.TokenNameRIGHT_SHIFT: case TerminalTokens.TokenNameUNSIGNED_RIGHT_SHIFT: argCount--; break; case TerminalTokens.TokenNameLESS: argCount++; break; } returnType += scanner.getCurrentTokenString(); } break; } lastToken = token; try { token = scanner.getNextToken(); } catch (InvalidInputException e) { return null; } } // parenthesis mismatch if (parameterCount>0 && !foundClosingParenthesis) return null; // type arguments mismatch if (argCount > 0) return null; char[] selectorChars = null; if (isConstructor) { // retrieve type for constructor patterns if (declaringType == null) declaringType = selector; else if (selector != null) declaringType += '.' + selector; } else { // get selector chars if (selector == null) return null; selectorChars = selector.toCharArray(); if (selectorChars.length == 1 && selectorChars[0] == '*') selectorChars = null; } char[] declaringTypeQualification = null, declaringTypeSimpleName = null; char[] returnTypeQualification = null, returnTypeSimpleName = null; char[][] parameterTypeQualifications = null, parameterTypeSimpleNames = null; // Signatures String declaringTypeSignature = null; String returnTypeSignature = null; String[] parameterTypeSignatures = null; // extract declaring type infos if (declaringType != null) { // get declaring type part and signature char[] declaringTypePart = null; try { declaringTypeSignature = Signature.createTypeSignature(declaringType, false); if (declaringTypeSignature.indexOf(Signature.C_GENERIC_START) < 0) { declaringTypePart = declaringType.toCharArray(); } else { declaringTypePart = Signature.toCharArray(Signature.getTypeErasure(declaringTypeSignature.toCharArray())); } } catch (IllegalArgumentException iae) { // declaring type is invalid return null; } int lastDotPosition = CharOperation.lastIndexOf('.', declaringTypePart); if (lastDotPosition >= 0) { declaringTypeQualification = CharOperation.subarray(declaringTypePart, 0, lastDotPosition); if (declaringTypeQualification.length == 1 && declaringTypeQualification[0] == '*') declaringTypeQualification = null; declaringTypeSimpleName = CharOperation.subarray(declaringTypePart, lastDotPosition+1, declaringTypePart.length); } else { declaringTypeSimpleName = declaringTypePart; } if (declaringTypeSimpleName.length == 1 && declaringTypeSimpleName[0] == '*') declaringTypeSimpleName = null; } // extract parameter types infos if (parameterCount >= 0) { parameterTypeQualifications = new char[parameterCount][]; parameterTypeSimpleNames = new char[parameterCount][]; parameterTypeSignatures = new String[parameterCount]; for (int i = 0; i < parameterCount; i++) { // get parameter type part and signature char[] parameterTypePart = null; try { if (parameterTypes != null) { parameterTypeSignatures[i] = Signature.createTypeSignature(parameterTypes[i], false); if (parameterTypeSignatures[i].indexOf(Signature.C_GENERIC_START) < 0) { parameterTypePart = parameterTypes[i].toCharArray(); } else { parameterTypePart = Signature.toCharArray(Signature.getTypeErasure(parameterTypeSignatures[i].toCharArray())); } } } catch (IllegalArgumentException iae) { // string is not a valid type syntax return null; } int lastDotPosition = parameterTypePart==null ? -1 : CharOperation.lastIndexOf('.', parameterTypePart); if (parameterTypePart != null && lastDotPosition >= 0) { parameterTypeQualifications[i] = CharOperation.subarray(parameterTypePart, 0, lastDotPosition); if (parameterTypeQualifications[i].length == 1 && parameterTypeQualifications[i][0] == '*') { parameterTypeQualifications[i] = null; } else { // prefix with a '*' as the full qualification could be bigger (because of an import) parameterTypeQualifications[i] = CharOperation.concat(IIndexConstants.ONE_STAR, parameterTypeQualifications[i]); } parameterTypeSimpleNames[i] = CharOperation.subarray(parameterTypePart, lastDotPosition+1, parameterTypePart.length); } else { parameterTypeQualifications[i] = null; parameterTypeSimpleNames[i] = parameterTypePart; } if (parameterTypeSimpleNames[i].length == 1 && parameterTypeSimpleNames[i][0] == '*') parameterTypeSimpleNames[i] = null; } } // extract return type infos if (returnType != null) { // get return type part and signature char[] returnTypePart = null; try { returnTypeSignature = Signature.createTypeSignature(returnType, false); if (returnTypeSignature.indexOf(Signature.C_GENERIC_START) < 0) { returnTypePart = returnType.toCharArray(); } else { returnTypePart = Signature.toCharArray(Signature.getTypeErasure(returnTypeSignature.toCharArray())); } } catch (IllegalArgumentException iae) { // declaring type is invalid return null; } int lastDotPosition = CharOperation.lastIndexOf('.', returnTypePart); if (lastDotPosition >= 0) { returnTypeQualification = CharOperation.subarray(returnTypePart, 0, lastDotPosition); if (returnTypeQualification.length == 1 && returnTypeQualification[0] == '*') { returnTypeQualification = null; } else { // because of an import returnTypeQualification = CharOperation.concat(IIndexConstants.ONE_STAR, returnTypeQualification); } returnTypeSimpleName = CharOperation.subarray(returnTypePart, lastDotPosition+1, returnTypePart.length); } else { returnTypeSimpleName = returnTypePart; } if (returnTypeSimpleName.length == 1 && returnTypeSimpleName[0] == '*') returnTypeSimpleName = null; } // Create method/constructor pattern if (isConstructor) { return new ConstructorPattern( declaringTypeSimpleName, declaringTypeQualification, declaringTypeSignature, parameterTypeQualifications, parameterTypeSimpleNames, parameterTypeSignatures, typeArguments, limitTo, matchRule); } else { return new MethodPattern( selectorChars, declaringTypeQualification, declaringTypeSimpleName, declaringTypeSignature, returnTypeQualification, returnTypeSimpleName, returnTypeSignature, parameterTypeQualifications, parameterTypeSimpleNames, parameterTypeSignatures, typeArguments, limitTo, matchRule); } } /** * Returns a search pattern that combines the given two patterns into an * "or" pattern. The search result will match either the left pattern or the * right pattern. * * @param leftPattern the left pattern * @param rightPattern the right pattern * @return an "or" pattern */ public static SearchPattern createOrPattern(SearchPattern leftPattern, SearchPattern rightPattern) { return new OrPattern(leftPattern, rightPattern); } private static SearchPattern createPackagePattern(String patternString, int limitTo, int matchRule) { switch (limitTo) { case IJavaSearchConstants.DECLARATIONS : return new PackageDeclarationPattern(patternString.toCharArray(), matchRule); case IJavaSearchConstants.REFERENCES : return new PackageReferencePattern(patternString.toCharArray(), matchRule); case IJavaSearchConstants.ALL_OCCURRENCES : return new OrPattern( new PackageDeclarationPattern(patternString.toCharArray(), matchRule), new PackageReferencePattern(patternString.toCharArray(), matchRule) ); } return null; } /** * Returns a search pattern based on a given string pattern. The string patterns support '*' wild-cards. * The remaining parameters are used to narrow down the type of expected results. * * <br> * Examples: * <ul> * <li>search for case insensitive references to <code>Object</code>: * <code>createSearchPattern("Object", IJavaSearchConstants.TYPE, IJavaSearchConstants.REFERENCES, false);</code></li> * <li>search for case sensitive references to exact <code>Object()</code> constructor: * <code>createSearchPattern("java.lang.Object()", IJavaSearchConstants.CONSTRUCTOR, IJavaSearchConstants.REFERENCES, true);</code></li> * <li>search for implementers of <code>java.lang.Runnable</code>: * <code>createSearchPattern("java.lang.Runnable", IJavaSearchConstants.TYPE, IJavaSearchConstants.IMPLEMENTORS, true);</code></li> * </ul> * @param stringPattern the given pattern * <ul> * <li>Type patterns have the following syntax: * <p><b><code>[qualification '.']typeName ['<' typeArguments '>']</code></b></p> * <p>Examples:</p> * <ul> * <li><code>java.lang.Object</code></li> * <li><code>Runnable</code></li> * <li><code>List<String></code></li> * </ul> * <p> * Type arguments can be specified to search for references to parameterized types * using following syntax:</p><p> * <b><code>'<' { [ '?' {'extends'|'super'} ] type ( ',' [ '?' {'extends'|'super'} ] type )* | '?' } '>'</code></b> * </p><div style="font-style:italic;"> * Note that: * <ul> * <li>'*' is not valid inside type arguments definition <></li> * <li>'?' is treated as a wildcard when it is inside <> (i.e. it must be put on first position of the type argument)</li> * </ul> * </div> * </li> * <li>Method patterns have the following syntax: * <p><b><code>[declaringType '.'] ['<' typeArguments '>'] methodName ['(' parameterTypes ')'] [returnType]</code></b></p> * <p>Type arguments have the same syntax as explained in the type patterns section.</p> * <p>Examples:</p> * <ul> * <li><code>java.lang.Runnable.run() void</code></li> * <li><code>main(*)</code></li> * <li><code><String>toArray(String[])</code></li> * </ul> * </li> * <li>Constructor patterns have the following syntax: * <p><b><code>['<' typeArguments '>'] [declaringQualification '.'] typeName ['(' parameterTypes ')']</code></b></p> * <p>Type arguments have the same syntax as explained in the type patterns section.</p> * <p><i>Note that the constructor name should not be entered as it is always the same as the type name.</i></p> * <p>Examples:</p> * <ul> * <li><code>java.lang.Object()</code></li> * <li><code>Test(*)</code></li> * <li><code><Exception>Sample(Exception)</code></li> * </ul> * <br> * </li> * <li>Field patterns have the following syntax: * <p><b><code>[declaringType '.'] fieldName [fieldType]</code></b></p> * <p>Examples:</p> * <ul> * <li><code>java.lang.String.serialVersionUID long</code></li> * <li><code>field*</code></li> * </ul> * </li> * <li>Package patterns have the following syntax: * <p><b><code>packageNameSegment {'.' packageNameSegment}</code></b></p> * <p>Examples:</p> * <ul> * <li><code>java.lang</code></li> * <li><code>org.e*.jdt.c*e</code></li> * </ul> * </li> * </ul> * @param searchFor determines the nature of the searched elements * <ul> * <li>{@link IJavaSearchConstants#CLASS}: only look for classes</li> * <li>{@link IJavaSearchConstants#INTERFACE}: only look for interfaces</li> * <li>{@link IJavaSearchConstants#ENUM}: only look for enumeration</li> * <li>{@link IJavaSearchConstants#ANNOTATION_TYPE}: only look for annotation type</li> * <li>{@link IJavaSearchConstants#CLASS_AND_ENUM}: only look for classes and enumerations</li> * <li>{@link IJavaSearchConstants#CLASS_AND_INTERFACE}: only look for classes and interfaces</li> * <li>{@link IJavaSearchConstants#TYPE}: look for all types (i.e. classes, interfaces, enum and annotation types)</li> * <li>{@link IJavaSearchConstants#FIELD}: look for fields</li> * <li>{@link IJavaSearchConstants#METHOD}: look for methods</li> * <li>{@link IJavaSearchConstants#CONSTRUCTOR}: look for constructors</li> * <li>{@link IJavaSearchConstants#PACKAGE}: look for packages</li> * </ul> * @param limitTo determines the nature of the expected matches * <ul> * <li>{@link IJavaSearchConstants#DECLARATIONS DECLARATIONS}: will search declarations matching * with the corresponding element. In case the element is a method, declarations of matching * methods in sub-types will also be found, allowing to find declarations of abstract methods, etc.<br> * Note that additional flags {@link IJavaSearchConstants#IGNORE_DECLARING_TYPE IGNORE_DECLARING_TYPE} and * {@link IJavaSearchConstants#IGNORE_RETURN_TYPE IGNORE_RETURN_TYPE} are ignored for string patterns. * This is due to the fact that client may omit to define them in string pattern to have same behavior. * </li> * <li>{@link IJavaSearchConstants#REFERENCES REFERENCES}: will search references to the given element.</li> * <li>{@link IJavaSearchConstants#ALL_OCCURRENCES ALL_OCCURRENCES}: will search for either declarations or * references as specified above. * </li> * <li>{@link IJavaSearchConstants#IMPLEMENTORS IMPLEMENTORS}: for types, will find all types * which directly implement/extend a given interface. * Note that types may be only classes or only interfaces if {@link IJavaSearchConstants#CLASS CLASS} or * {@link IJavaSearchConstants#INTERFACE INTERFACE} is respectively used instead of {@link IJavaSearchConstants#TYPE TYPE}. * </li> * <li>All other fine grain constants defined in the <b>limitTo</b> category * of the {@link IJavaSearchConstants} are also accepted nature: * <table border=0> * <tr> * <th align=left>Fine grain constant * <th align=left>Meaning * <tr> * <td>{@link IJavaSearchConstants#FIELD_DECLARATION_TYPE_REFERENCE FIELD_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used as the type of a field declaration. * <tr> * <td>{@link IJavaSearchConstants#LOCAL_VARIABLE_DECLARATION_TYPE_REFERENCE LOCAL_VARIABLE_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used as the type of a local variable declaration. * <tr> * <td>{@link IJavaSearchConstants#PARAMETER_DECLARATION_TYPE_REFERENCE PARAMETER_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used as the type of a method parameter declaration. * <tr> * <td>{@link IJavaSearchConstants#SUPERTYPE_TYPE_REFERENCE SUPERTYPE_TYPE_REFERENCE} * <td>Return only type references used as a super type or as a super interface. * <tr> * <td>{@link IJavaSearchConstants#THROWS_CLAUSE_TYPE_REFERENCE THROWS_CLAUSE_TYPE_REFERENCE} * <td>Return only type references used in a throws clause. * <tr> * <td>{@link IJavaSearchConstants#CAST_TYPE_REFERENCE CAST_TYPE_REFERENCE} * <td>Return only type references used in a cast expression. * <tr> * <td>{@link IJavaSearchConstants#CATCH_TYPE_REFERENCE CATCH_TYPE_REFERENCE} * <td>Return only type references used in a catch header. * <tr> * <td>{@link IJavaSearchConstants#CLASS_INSTANCE_CREATION_TYPE_REFERENCE CLASS_INSTANCE_CREATION_TYPE_REFERENCE} * <td>Return only type references used in class instance creation. * <tr> * <td>{@link IJavaSearchConstants#RETURN_TYPE_REFERENCE RETURN_TYPE_REFERENCE} * <td>Return only type references used as a method return type. * <tr> * <td>{@link IJavaSearchConstants#IMPORT_DECLARATION_TYPE_REFERENCE IMPORT_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used in an import declaration. * <tr> * <td>{@link IJavaSearchConstants#ANNOTATION_TYPE_REFERENCE ANNOTATION_TYPE_REFERENCE} * <td>Return only type references used as an annotation. * <tr> * <td>{@link IJavaSearchConstants#TYPE_ARGUMENT_TYPE_REFERENCE TYPE_ARGUMENT_TYPE_REFERENCE} * <td>Return only type references used as a type argument in a parameterized type or a parameterized method. * <tr> * <td>{@link IJavaSearchConstants#TYPE_VARIABLE_BOUND_TYPE_REFERENCE TYPE_VARIABLE_BOUND_TYPE_REFERENCE} * <td>Return only type references used as a type variable bound. * <tr> * <td>{@link IJavaSearchConstants#WILDCARD_BOUND_TYPE_REFERENCE WILDCARD_BOUND_TYPE_REFERENCE} * <td>Return only type references used as a wildcard bound. * <tr> * <td>{@link IJavaSearchConstants#INSTANCEOF_TYPE_REFERENCE INSTANCEOF_TYPE_REFERENCE} * <td>Return only type references used as a type of an <code>instanceof</code> expression. * <tr> * <td>{@link IJavaSearchConstants#SUPER_REFERENCE SUPER_REFERENCE} * <td>Return only super field accesses or super method invocations (e.g. using the <code>super</code> qualifier). * <tr> * <td>{@link IJavaSearchConstants#QUALIFIED_REFERENCE QUALIFIED_REFERENCE} * <td>Return only qualified field accesses or qualified method invocations. * <tr> * <td>{@link IJavaSearchConstants#THIS_REFERENCE THIS_REFERENCE} * <td>Return only primary field accesses or primary method invocations (e.g. using the <code>this</code> qualifier). * <tr> * <td>{@link IJavaSearchConstants#IMPLICIT_THIS_REFERENCE IMPLICIT_THIS_REFERENCE} * <td>Return only field accesses or method invocations without any qualification. * </table> * </li> * </ul> * @param matchRule one of the following match rules * <ul> * <li>{@link #R_EXACT_MATCH}</li> * <li>{@link #R_PREFIX_MATCH}</li> * <li>{@link #R_PATTERN_MATCH}</li> * <li>{@link #R_REGEXP_MATCH}</li> * <li>{@link #R_CAMELCASE_MATCH}</li> * <li>{@link #R_CAMELCASE_SAME_PART_COUNT_MATCH}</li> * </ul> * , which may be also combined with one of the following flags: * <ul> * <li>{@link #R_CASE_SENSITIVE}</li> * <li>{@link #R_ERASURE_MATCH}</li> * <li>{@link #R_EQUIVALENT_MATCH}</li> * </ul> * For example, * <ul> * <li>{@link #R_EXACT_MATCH} | {@link #R_CASE_SENSITIVE}: if an exact * and case sensitive match is requested,</li> * <li>{@link #R_PREFIX_MATCH} if a case insensitive prefix match is requested</li> * <li>{@link #R_EXACT_MATCH} | {@link #R_ERASURE_MATCH}: if a case * insensitive and erasure match is requested.</li> * </ul> * <p>Note that {@link #R_ERASURE_MATCH} or {@link #R_EQUIVALENT_MATCH} has no effect * on non-generic types/methods search.</p> * <p> * Note also that the default behavior for generic types/methods search is to find exact matches.</p> * @return a search pattern on the given string pattern, or <code>null</code> if the string pattern is ill-formed */ public static SearchPattern createPattern(String stringPattern, int searchFor, int limitTo, int matchRule) { if (stringPattern == null || stringPattern.length() == 0) return null; if ((matchRule = validateMatchRule(stringPattern, matchRule)) == -1) { return null; } // Ignore additional nature flags limitTo &= ~(IJavaSearchConstants.IGNORE_DECLARING_TYPE+IJavaSearchConstants.IGNORE_RETURN_TYPE); switch (searchFor) { case IJavaSearchConstants.CLASS: return createTypePattern(stringPattern, limitTo, matchRule, IIndexConstants.CLASS_SUFFIX); case IJavaSearchConstants.CLASS_AND_INTERFACE: return createTypePattern(stringPattern, limitTo, matchRule, IIndexConstants.CLASS_AND_INTERFACE_SUFFIX); case IJavaSearchConstants.CLASS_AND_ENUM: return createTypePattern(stringPattern, limitTo, matchRule, IIndexConstants.CLASS_AND_ENUM_SUFFIX); case IJavaSearchConstants.INTERFACE: return createTypePattern(stringPattern, limitTo, matchRule, IIndexConstants.INTERFACE_SUFFIX); case IJavaSearchConstants.INTERFACE_AND_ANNOTATION: return createTypePattern(stringPattern, limitTo, matchRule, IIndexConstants.INTERFACE_AND_ANNOTATION_SUFFIX); case IJavaSearchConstants.ENUM: return createTypePattern(stringPattern, limitTo, matchRule, IIndexConstants.ENUM_SUFFIX); case IJavaSearchConstants.ANNOTATION_TYPE: return createTypePattern(stringPattern, limitTo, matchRule, IIndexConstants.ANNOTATION_TYPE_SUFFIX); case IJavaSearchConstants.TYPE: return createTypePattern(stringPattern, limitTo, matchRule, IIndexConstants.TYPE_SUFFIX); case IJavaSearchConstants.METHOD: return createMethodOrConstructorPattern(stringPattern, limitTo, matchRule, false/*not a constructor*/); case IJavaSearchConstants.CONSTRUCTOR: return createMethodOrConstructorPattern(stringPattern, limitTo, matchRule, true/*constructor*/); case IJavaSearchConstants.FIELD: return createFieldPattern(stringPattern, limitTo, matchRule); case IJavaSearchConstants.PACKAGE: return createPackagePattern(stringPattern, limitTo, matchRule); } return null; } /** * Returns a search pattern based on a given Java element. * The pattern is used to trigger the appropriate search. * <br> * Note that for generic searches, the returned pattern consider {@link #R_ERASURE_MATCH} matches. * If other kind of generic matches (i.e. {@link #R_EXACT_MATCH} or {@link #R_EQUIVALENT_MATCH}) * are expected, {@link #createPattern(IJavaElement, int, int)} method need to be used instead with * the explicit match rule specified. * <br> * The pattern can be parameterized as follows: * * @param element the Java element the search pattern is based on * @param limitTo determines the nature of the expected matches * <ul> * <li>{@link IJavaSearchConstants#DECLARATIONS DECLARATIONS}: will search declarations matching * with the corresponding element. In case the element is a method, declarations of matching * methods in sub-types will also be found, allowing to find declarations of abstract methods, etc. * Some additional flags may be specified while searching declaration: * <ul> * <li>{@link IJavaSearchConstants#IGNORE_DECLARING_TYPE IGNORE_DECLARING_TYPE}: declaring type will be ignored * during the search.<br> * For example using following test case: * <pre> * class A { A method() { return null; } } * class B extends A { B method() { return null; } } * class C { A method() { return null; } } * </pre> * search for <code>method</code> declaration with this flag * will return 2 matches: in A and in C * </li> * <li>{@link IJavaSearchConstants#IGNORE_RETURN_TYPE IGNORE_RETURN_TYPE}: return type will be ignored * during the search.<br> * Using same example, search for <code>method</code> declaration with this flag * will return 2 matches: in A and in B. * </li> * </ul> * Note that these two flags may be combined and both declaring and return types can be ignored * during the search. Then, using same example, search for <code>method</code> declaration * with these 2 flags will return 3 matches: in A, in B and in C * </li> * <li>{@link IJavaSearchConstants#REFERENCES REFERENCES}: will search references to the given element.</li> * <li>{@link IJavaSearchConstants#ALL_OCCURRENCES ALL_OCCURRENCES}: will search for either declarations or * references as specified above. * </li> * <li>All other fine grain constants defined in the <b>limitTo</b> category * of the {@link IJavaSearchConstants} are also accepted nature: * <table border=0> * <tr> * <th align=left>Fine grain constant * <th align=left>Meaning * <tr> * <td>{@link IJavaSearchConstants#FIELD_DECLARATION_TYPE_REFERENCE FIELD_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used as the type of a field declaration. * <tr> * <td>{@link IJavaSearchConstants#LOCAL_VARIABLE_DECLARATION_TYPE_REFERENCE LOCAL_VARIABLE_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used as the type of a local variable declaration. * <tr> * <td>{@link IJavaSearchConstants#PARAMETER_DECLARATION_TYPE_REFERENCE PARAMETER_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used as the type of a method parameter declaration. * <tr> * <td>{@link IJavaSearchConstants#SUPERTYPE_TYPE_REFERENCE SUPERTYPE_TYPE_REFERENCE} * <td>Return only type references used as a super type or as a super interface. * <tr> * <td>{@link IJavaSearchConstants#THROWS_CLAUSE_TYPE_REFERENCE THROWS_CLAUSE_TYPE_REFERENCE} * <td>Return only type references used in a throws clause. * <tr> * <td>{@link IJavaSearchConstants#CAST_TYPE_REFERENCE CAST_TYPE_REFERENCE} * <td>Return only type references used in a cast expression. * <tr> * <td>{@link IJavaSearchConstants#CATCH_TYPE_REFERENCE CATCH_TYPE_REFERENCE} * <td>Return only type references used in a catch header. * <tr> * <td>{@link IJavaSearchConstants#CLASS_INSTANCE_CREATION_TYPE_REFERENCE CLASS_INSTANCE_CREATION_TYPE_REFERENCE} * <td>Return only type references used in class instance creation. * <tr> * <td>{@link IJavaSearchConstants#RETURN_TYPE_REFERENCE RETURN_TYPE_REFERENCE} * <td>Return only type references used as a method return type. * <tr> * <td>{@link IJavaSearchConstants#IMPORT_DECLARATION_TYPE_REFERENCE IMPORT_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used in an import declaration. * <tr> * <td>{@link IJavaSearchConstants#ANNOTATION_TYPE_REFERENCE ANNOTATION_TYPE_REFERENCE} * <td>Return only type references used as an annotation. * <tr> * <td>{@link IJavaSearchConstants#TYPE_ARGUMENT_TYPE_REFERENCE TYPE_ARGUMENT_TYPE_REFERENCE} * <td>Return only type references used as a type argument in a parameterized type or a parameterized method. * <tr> * <td>{@link IJavaSearchConstants#TYPE_VARIABLE_BOUND_TYPE_REFERENCE TYPE_VARIABLE_BOUND_TYPE_REFERENCE} * <td>Return only type references used as a type variable bound. * <tr> * <td>{@link IJavaSearchConstants#WILDCARD_BOUND_TYPE_REFERENCE WILDCARD_BOUND_TYPE_REFERENCE} * <td>Return only type references used as a wildcard bound. * <tr> * <td>{@link IJavaSearchConstants#INSTANCEOF_TYPE_REFERENCE INSTANCEOF_TYPE_REFERENCE} * <td>Return only type references used as a type of an <code>instanceof</code> expression. * <tr> * <td>{@link IJavaSearchConstants#SUPER_REFERENCE SUPER_REFERENCE} * <td>Return only super field accesses or super method invocations (e.g. using the <code>super</code> qualifier). * <tr> * <td>{@link IJavaSearchConstants#QUALIFIED_REFERENCE QUALIFIED_REFERENCE} * <td>Return only qualified field accesses or qualified method invocations. * <tr> * <td>{@link IJavaSearchConstants#THIS_REFERENCE THIS_REFERENCE} * <td>Return only primary field accesses or primary method invocations (e.g. using the <code>this</code> qualifier). * <tr> * <td>{@link IJavaSearchConstants#IMPLICIT_THIS_REFERENCE IMPLICIT_THIS_REFERENCE} * <td>Return only field accesses or method invocations without any qualification. * </table> * </li> * </ul> * @return a search pattern for a Java element or <code>null</code> if the given element is ill-formed */ public static SearchPattern createPattern(IJavaElement element, int limitTo) { return createPattern(element, limitTo, R_EXACT_MATCH | R_CASE_SENSITIVE | R_ERASURE_MATCH); } /** * Returns a search pattern based on a given Java element. * The pattern is used to trigger the appropriate search, and can be parameterized as follows: * * @param element the Java element the search pattern is based on * @param limitTo determines the nature of the expected matches * <ul> * <li>{@link IJavaSearchConstants#DECLARATIONS DECLARATIONS}: will search declarations matching * with the corresponding element. In case the element is a method, declarations of matching * methods in sub-types will also be found, allowing to find declarations of abstract methods, etc. * Some additional flags may be specified while searching declaration: * <ul> * <li>{@link IJavaSearchConstants#IGNORE_DECLARING_TYPE IGNORE_DECLARING_TYPE}: declaring type will be ignored * during the search.<br> * For example using following test case: * <pre> * class A { A method() { return null; } } * class B extends A { B method() { return null; } } * class C { A method() { return null; } } * </pre> * search for <code>method</code> declaration with this flag * will return 2 matches: in A and in C * </li> * <li>{@link IJavaSearchConstants#IGNORE_RETURN_TYPE IGNORE_RETURN_TYPE}: return type will be ignored * during the search.<br> * Using same example, search for <code>method</code> declaration with this flag * will return 2 matches: in A and in B. * </li> * </ul> * Note that these two flags may be combined and both declaring and return types can be ignored * during the search. Then, using same example, search for <code>method</code> declaration * with these 2 flags will return 3 matches: in A, in B and in C * </li> * <li>{@link IJavaSearchConstants#REFERENCES REFERENCES}: will search references to the given element.</li> * <li>{@link IJavaSearchConstants#ALL_OCCURRENCES ALL_OCCURRENCES}: will search for either declarations or * references as specified above. * </li> * <li>All other fine grain constants defined in the <b>limitTo</b> category * of the {@link IJavaSearchConstants} are also accepted nature: * <table border=0> * <tr> * <th align=left>Fine grain constant * <th align=left>Meaning * <tr> * <td>{@link IJavaSearchConstants#FIELD_DECLARATION_TYPE_REFERENCE FIELD_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used as the type of a field declaration. * <tr> * <td>{@link IJavaSearchConstants#LOCAL_VARIABLE_DECLARATION_TYPE_REFERENCE LOCAL_VARIABLE_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used as the type of a local variable declaration. * <tr> * <td>{@link IJavaSearchConstants#PARAMETER_DECLARATION_TYPE_REFERENCE PARAMETER_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used as the type of a method parameter declaration. * <tr> * <td>{@link IJavaSearchConstants#SUPERTYPE_TYPE_REFERENCE SUPERTYPE_TYPE_REFERENCE} * <td>Return only type references used as a super type or as a super interface. * <tr> * <td>{@link IJavaSearchConstants#THROWS_CLAUSE_TYPE_REFERENCE THROWS_CLAUSE_TYPE_REFERENCE} * <td>Return only type references used in a throws clause. * <tr> * <td>{@link IJavaSearchConstants#CAST_TYPE_REFERENCE CAST_TYPE_REFERENCE} * <td>Return only type references used in a cast expression. * <tr> * <td>{@link IJavaSearchConstants#CATCH_TYPE_REFERENCE CATCH_TYPE_REFERENCE} * <td>Return only type references used in a catch header. * <tr> * <td>{@link IJavaSearchConstants#CLASS_INSTANCE_CREATION_TYPE_REFERENCE CLASS_INSTANCE_CREATION_TYPE_REFERENCE} * <td>Return only type references used in class instance creation. * <tr> * <td>{@link IJavaSearchConstants#RETURN_TYPE_REFERENCE RETURN_TYPE_REFERENCE} * <td>Return only type references used as a method return type. * <tr> * <td>{@link IJavaSearchConstants#IMPORT_DECLARATION_TYPE_REFERENCE IMPORT_DECLARATION_TYPE_REFERENCE} * <td>Return only type references used in an import declaration. * <tr> * <td>{@link IJavaSearchConstants#ANNOTATION_TYPE_REFERENCE ANNOTATION_TYPE_REFERENCE} * <td>Return only type references used as an annotation. * <tr> * <td>{@link IJavaSearchConstants#TYPE_ARGUMENT_TYPE_REFERENCE TYPE_ARGUMENT_TYPE_REFERENCE} * <td>Return only type references used as a type argument in a parameterized type or a parameterized method. * <tr> * <td>{@link IJavaSearchConstants#TYPE_VARIABLE_BOUND_TYPE_REFERENCE TYPE_VARIABLE_BOUND_TYPE_REFERENCE} * <td>Return only type references used as a type variable bound. * <tr> * <td>{@link IJavaSearchConstants#WILDCARD_BOUND_TYPE_REFERENCE WILDCARD_BOUND_TYPE_REFERENCE} * <td>Return only type references used as a wildcard bound. * <tr> * <td>{@link IJavaSearchConstants#INSTANCEOF_TYPE_REFERENCE INSTANCEOF_TYPE_REFERENCE} * <td>Return only type references used as a type of an <code>instanceof</code> expression. * <tr> * <td>{@link IJavaSearchConstants#SUPER_REFERENCE SUPER_REFERENCE} * <td>Return only super field accesses or super method invocations (e.g. using the <code>super</code> qualifier). * <tr> * <td>{@link IJavaSearchConstants#QUALIFIED_REFERENCE QUALIFIED_REFERENCE} * <td>Return only qualified field accesses or qualified method invocations. * <tr> * <td>{@link IJavaSearchConstants#THIS_REFERENCE THIS_REFERENCE} * <td>Return only primary field accesses or primary method invocations (e.g. using the <code>this</code> qualifier). * <tr> * <td>{@link IJavaSearchConstants#IMPLICIT_THIS_REFERENCE IMPLICIT_THIS_REFERENCE} * <td>Return only field accesses or method invocations without any qualification. * </table> * </li> * </ul> * @param matchRule one of the following match rules: * <ul> * <li>{@link #R_EXACT_MATCH}</li> * <li>{@link #R_PREFIX_MATCH}</li> * <li>{@link #R_PATTERN_MATCH}</li> * <li>{@link #R_REGEXP_MATCH}</li> * <li>{@link #R_CAMELCASE_MATCH}</li> * <li>{@link #R_CAMELCASE_SAME_PART_COUNT_MATCH}</li> * </ul> * , which may be also combined with one of the following flags: * <ul> * <li>{@link #R_CASE_SENSITIVE}</li> * <li>{@link #R_ERASURE_MATCH}</li> * <li>{@link #R_EQUIVALENT_MATCH}</li> * </ul> * For example, * <ul> * <li>{@link #R_EXACT_MATCH} | {@link #R_CASE_SENSITIVE}: if an exact * and case sensitive match is requested,</li> * <li>{@link #R_PREFIX_MATCH} if a case insensitive prefix match is requested</li> * <li>{@link #R_EXACT_MATCH} | {@link #R_ERASURE_MATCH}: if a case * insensitive and erasure match is requested.</li> * </ul> * Note that {@link #R_ERASURE_MATCH} or {@link #R_EQUIVALENT_MATCH} has no effect * on non-generic types/methods search. * <p> * Note also that default behavior for generic types/methods search is to find exact matches. * @return a search pattern for a Java element or <code>null</code> if the given element is ill-formed * @since 3.1 */ public static SearchPattern createPattern(IJavaElement element, int limitTo, int matchRule) { SearchPattern searchPattern = null; int lastDot; boolean ignoreDeclaringType = false; boolean ignoreReturnType = false; int maskedLimitTo = limitTo & ~(IJavaSearchConstants.IGNORE_DECLARING_TYPE+IJavaSearchConstants.IGNORE_RETURN_TYPE); if (maskedLimitTo == IJavaSearchConstants.DECLARATIONS || maskedLimitTo == IJavaSearchConstants.ALL_OCCURRENCES) { ignoreDeclaringType = (limitTo & IJavaSearchConstants.IGNORE_DECLARING_TYPE) != 0; ignoreReturnType = (limitTo & IJavaSearchConstants.IGNORE_RETURN_TYPE) != 0; } if ((matchRule = validateMatchRule(null, matchRule)) == -1) { return null; } char[] declaringSimpleName = null; char[] declaringQualification = null; switch (element.getElementType()) { case IJavaElement.FIELD : IField field = (IField) element; if (!ignoreDeclaringType) { IType declaringClass = field.getDeclaringType(); declaringSimpleName = declaringClass.getElementName().toCharArray(); declaringQualification = declaringClass.getPackageFragment().getElementName().toCharArray(); char[][] enclosingNames = enclosingTypeNames(declaringClass); if (enclosingNames.length > 0) { declaringQualification = CharOperation.concat(declaringQualification, CharOperation.concatWith(enclosingNames, '.'), '.'); } } char[] name = field.getElementName().toCharArray(); char[] typeSimpleName = null; char[] typeQualification = null; String typeSignature = null; if (!ignoreReturnType) { try { typeSignature = field.getTypeSignature(); char[] signature = typeSignature.toCharArray(); char[] typeErasure = Signature.toCharArray(Signature.getTypeErasure(signature)); CharOperation.replace(typeErasure, '$', '.'); if ((lastDot = CharOperation.lastIndexOf('.', typeErasure)) == -1) { typeSimpleName = typeErasure; } else { typeSimpleName = CharOperation.subarray(typeErasure, lastDot + 1, typeErasure.length); typeQualification = CharOperation.subarray(typeErasure, 0, lastDot); if (!field.isBinary()) { // prefix with a '*' as the full qualification could be bigger (because of an import) typeQualification = CharOperation.concat(IIndexConstants.ONE_STAR, typeQualification); } } } catch (JavaModelException e) { return null; } } // Create field pattern searchPattern = new FieldPattern( name, declaringQualification, declaringSimpleName, typeQualification, typeSimpleName, typeSignature, limitTo, matchRule); break; case IJavaElement.IMPORT_DECLARATION : String elementName = element.getElementName(); lastDot = elementName.lastIndexOf('.'); if (lastDot == -1) return null; // invalid import declaration IImportDeclaration importDecl = (IImportDeclaration)element; if (importDecl.isOnDemand()) { searchPattern = createPackagePattern(elementName.substring(0, lastDot), maskedLimitTo, matchRule); } else { searchPattern = createTypePattern( elementName.substring(lastDot+1).toCharArray(), elementName.substring(0, lastDot).toCharArray(), null, null, null, maskedLimitTo, matchRule); } break; case IJavaElement.LOCAL_VARIABLE : LocalVariable localVar = (LocalVariable) element; searchPattern = new LocalVariablePattern(localVar, limitTo, matchRule); break; case IJavaElement.TYPE_PARAMETER: ITypeParameter typeParam = (ITypeParameter) element; boolean findParamDeclarations = true; boolean findParamReferences = true; switch (maskedLimitTo) { case IJavaSearchConstants.DECLARATIONS : findParamReferences = false; break; case IJavaSearchConstants.REFERENCES : findParamDeclarations = false; break; } searchPattern = new TypeParameterPattern( findParamDeclarations, findParamReferences, typeParam, matchRule); break; case IJavaElement.METHOD : IMethod method = (IMethod) element; boolean isConstructor; try { isConstructor = method.isConstructor(); } catch (JavaModelException e) { return null; } IType declaringClass = method.getDeclaringType(); if (ignoreDeclaringType) { if (isConstructor) declaringSimpleName = declaringClass.getElementName().toCharArray(); } else { declaringSimpleName = declaringClass.getElementName().toCharArray(); declaringQualification = declaringClass.getPackageFragment().getElementName().toCharArray(); char[][] enclosingNames = enclosingTypeNames(declaringClass); if (enclosingNames.length > 0) { declaringQualification = CharOperation.concat(declaringQualification, CharOperation.concatWith(enclosingNames, '.'), '.'); } } char[] selector = method.getElementName().toCharArray(); char[] returnSimpleName = null; char[] returnQualification = null; String returnSignature = null; if (!ignoreReturnType) { try { returnSignature = method.getReturnType(); char[] signature = returnSignature.toCharArray(); char[] returnErasure = Signature.toCharArray(Signature.getTypeErasure(signature)); CharOperation.replace(returnErasure, '$', '.'); if ((lastDot = CharOperation.lastIndexOf('.', returnErasure)) == -1) { returnSimpleName = returnErasure; } else { returnSimpleName = CharOperation.subarray(returnErasure, lastDot + 1, returnErasure.length); returnQualification = CharOperation.subarray(returnErasure, 0, lastDot); if (!method.isBinary()) { // prefix with a '*' as the full qualification could be bigger (because of an import) CharOperation.concat(IIndexConstants.ONE_STAR, returnQualification); } } } catch (JavaModelException e) { return null; } } String[] parameterTypes = method.getParameterTypes(); int paramCount = parameterTypes.length; char[][] parameterSimpleNames = new char[paramCount][]; char[][] parameterQualifications = new char[paramCount][]; String[] parameterSignatures = new String[paramCount]; for (int i = 0; i < paramCount; i++) { parameterSignatures[i] = parameterTypes[i]; char[] signature = parameterSignatures[i].toCharArray(); char[] paramErasure = Signature.toCharArray(Signature.getTypeErasure(signature)); CharOperation.replace(paramErasure, '$', '.'); if ((lastDot = CharOperation.lastIndexOf('.', paramErasure)) == -1) { parameterSimpleNames[i] = paramErasure; parameterQualifications[i] = null; } else { parameterSimpleNames[i] = CharOperation.subarray(paramErasure, lastDot + 1, paramErasure.length); parameterQualifications[i] = CharOperation.subarray(paramErasure, 0, lastDot); if (!method.isBinary()) { // prefix with a '*' as the full qualification could be bigger (because of an import) CharOperation.concat(IIndexConstants.ONE_STAR, parameterQualifications[i]); } } } // Create method/constructor pattern if (isConstructor) { searchPattern = new ConstructorPattern( declaringSimpleName, declaringQualification, parameterQualifications, parameterSimpleNames, parameterSignatures, method, limitTo, matchRule); } else { searchPattern = new MethodPattern( selector, declaringQualification, declaringSimpleName, returnQualification, returnSimpleName, returnSignature, parameterQualifications, parameterSimpleNames, parameterSignatures, method, limitTo, matchRule); } break; case IJavaElement.TYPE : IType type = (IType)element; searchPattern = createTypePattern( type.getElementName().toCharArray(), type.getPackageFragment().getElementName().toCharArray(), ignoreDeclaringType ? null : enclosingTypeNames(type), null, type, maskedLimitTo, matchRule); break; case IJavaElement.PACKAGE_DECLARATION : case IJavaElement.PACKAGE_FRAGMENT : searchPattern = createPackagePattern(element.getElementName(), maskedLimitTo, matchRule); break; } if (searchPattern != null) MatchLocator.setFocus(searchPattern, element); return searchPattern; } private static SearchPattern createTypePattern(char[] simpleName, char[] packageName, char[][] enclosingTypeNames, String typeSignature, IType type, int limitTo, int matchRule) { switch (limitTo) { case IJavaSearchConstants.DECLARATIONS : return new TypeDeclarationPattern( packageName, enclosingTypeNames, simpleName, IIndexConstants.TYPE_SUFFIX, matchRule); case IJavaSearchConstants.REFERENCES : if (type != null) { return new TypeReferencePattern( CharOperation.concatWith(packageName, enclosingTypeNames, '.'), simpleName, type, matchRule); } return new TypeReferencePattern( CharOperation.concatWith(packageName, enclosingTypeNames, '.'), simpleName, typeSignature, matchRule); case IJavaSearchConstants.IMPLEMENTORS : return new SuperTypeReferencePattern( CharOperation.concatWith(packageName, enclosingTypeNames, '.'), simpleName, SuperTypeReferencePattern.ONLY_SUPER_INTERFACES, matchRule); case IJavaSearchConstants.ALL_OCCURRENCES : return new OrPattern( new TypeDeclarationPattern( packageName, enclosingTypeNames, simpleName, IIndexConstants.TYPE_SUFFIX, matchRule), (type != null) ? new TypeReferencePattern( CharOperation.concatWith(packageName, enclosingTypeNames, '.'), simpleName, type, matchRule) : new TypeReferencePattern( CharOperation.concatWith(packageName, enclosingTypeNames, '.'), simpleName, typeSignature, matchRule) ); default: if (type != null) { return new TypeReferencePattern( CharOperation.concatWith(packageName, enclosingTypeNames, '.'), simpleName, type, limitTo, matchRule); } } return null; } private static SearchPattern createTypePattern(String patternString, int limitTo, int matchRule, char indexSuffix) { Scanner scanner = new Scanner(false /*comment*/, true /*whitespace*/, false /*nls*/, ClassFileConstants.JDK1_3/*sourceLevel*/, null /*taskTags*/, null/*taskPriorities*/, true/*taskCaseSensitive*/); scanner.setSource(patternString.toCharArray()); String type = null; int token; try { token = scanner.getNextToken(); } catch (InvalidInputException e) { return null; } int argCount = 0; while (token != TerminalTokens.TokenNameEOF) { if (argCount == 0) { switch (token) { case TerminalTokens.TokenNameWHITESPACE: break; case TerminalTokens.TokenNameLESS: argCount++; // $FALL-THROUGH$ - fall through default case to add token to type default: // all other tokens are considered identifiers (see bug 21763 Problem in Java search [search]) if (type == null) type = scanner.getCurrentTokenString(); else type += scanner.getCurrentTokenString(); } } else { switch (token) { case TerminalTokens.TokenNameGREATER: case TerminalTokens.TokenNameRIGHT_SHIFT: case TerminalTokens.TokenNameUNSIGNED_RIGHT_SHIFT: argCount--; break; case TerminalTokens.TokenNameLESS: argCount++; break; } if (type == null) return null; // invalid syntax type += scanner.getCurrentTokenString(); } try { token = scanner.getNextToken(); } catch (InvalidInputException e) { return null; } } if (type == null) return null; String typeSignature = null; char[] qualificationChars = null, typeChars = null; // get type part and signature char[] typePart = null; try { typeSignature = Signature.createTypeSignature(type, false); if (typeSignature.indexOf(Signature.C_GENERIC_START) < 0) { typePart = type.toCharArray(); } else { typePart = Signature.toCharArray(Signature.getTypeErasure(typeSignature.toCharArray())); } } catch (IllegalArgumentException iae) { // string is not a valid type syntax return null; } // get qualification name int lastDotPosition = CharOperation.lastIndexOf('.', typePart); if (lastDotPosition >= 0) { qualificationChars = CharOperation.subarray(typePart, 0, lastDotPosition); if (qualificationChars.length == 1 && qualificationChars[0] == '*') qualificationChars = null; typeChars = CharOperation.subarray(typePart, lastDotPosition+1, typePart.length); } else { typeChars = typePart; } if (typeChars.length == 1 && typeChars[0] == '*') { typeChars = null; } switch (limitTo) { case IJavaSearchConstants.DECLARATIONS : // cannot search for explicit member types return new QualifiedTypeDeclarationPattern(qualificationChars, typeChars, indexSuffix, matchRule); case IJavaSearchConstants.REFERENCES : return new TypeReferencePattern(qualificationChars, typeChars, typeSignature, indexSuffix, matchRule); case IJavaSearchConstants.IMPLEMENTORS : return new SuperTypeReferencePattern(qualificationChars, typeChars, SuperTypeReferencePattern.ONLY_SUPER_INTERFACES, indexSuffix, matchRule); case IJavaSearchConstants.ALL_OCCURRENCES : return new OrPattern( new QualifiedTypeDeclarationPattern(qualificationChars, typeChars, indexSuffix, matchRule),// cannot search for explicit member types new TypeReferencePattern(qualificationChars, typeChars, typeSignature, indexSuffix, matchRule)); default: return new TypeReferencePattern(qualificationChars, typeChars, typeSignature, limitTo, indexSuffix, matchRule); } } /** * Returns the enclosing type names of the given type. */ private static char[][] enclosingTypeNames(IType type) { IJavaElement parent = type.getParent(); switch (parent.getElementType()) { case IJavaElement.CLASS_FILE: // For a binary type, the parent is not the enclosing type, but the declaring type is. // (see bug 20532 Declaration of member binary type not found) IType declaringType = type.getDeclaringType(); if (declaringType == null) return CharOperation.NO_CHAR_CHAR; return CharOperation.arrayConcat( enclosingTypeNames(declaringType), declaringType.getElementName().toCharArray()); case IJavaElement.COMPILATION_UNIT: return CharOperation.NO_CHAR_CHAR; case IJavaElement.FIELD: case IJavaElement.INITIALIZER: case IJavaElement.METHOD: IType declaringClass = ((IMember) parent).getDeclaringType(); return CharOperation.arrayConcat( enclosingTypeNames(declaringClass), new char[][] {declaringClass.getElementName().toCharArray(), IIndexConstants.ONE_STAR}); case IJavaElement.TYPE: return CharOperation.arrayConcat( enclosingTypeNames((IType)parent), parent.getElementName().toCharArray()); default: return null; } } /** * Decode the given index key in this pattern. The decoded index key is used by * {@link #matchesDecodedKey(SearchPattern)} to find out if the corresponding index entry * should be considered. * <p> * This method should be re-implemented in subclasses that need to decode an index key. * </p> * * @param key the given index key */ public void decodeIndexKey(char[] key) { // called from findIndexMatches(), override as necessary } /** * Query a given index for matching entries. Assumes the sender has opened the index and will close when finished. * * @noreference This method is not intended to be referenced by clients. * @nooverride This method is not intended to be re-implemented or extended by clients. */ public void findIndexMatches(Index index, IndexQueryRequestor requestor, SearchParticipant participant, IJavaSearchScope scope, IProgressMonitor monitor) throws IOException { if (monitor != null && monitor.isCanceled()) throw new OperationCanceledException(); try { index.startQuery(); SearchPattern pattern = currentPattern(); EntryResult[] entries = pattern.queryIn(index); if (entries == null) return; SearchPattern decodedResult = pattern.getBlankPattern(); String containerPath = index.containerPath; char separator = index.separator; for (int i = 0, l = entries.length; i < l; i++) { if (monitor != null && monitor.isCanceled()) throw new OperationCanceledException(); EntryResult entry = entries[i]; decodedResult.decodeIndexKey(entry.getWord()); if (pattern.matchesDecodedKey(decodedResult)) { // TODO (kent) some clients may not need the document names String[] names = entry.getDocumentNames(index); for (int j = 0, n = names.length; j < n; j++) acceptMatch(names[j], containerPath, separator, decodedResult, requestor, participant, scope, monitor); } } } finally { index.stopQuery(); } } /** * Returns a blank pattern that can be used as a record to decode an index key. * <p> * Implementors of this method should return a new search pattern that is going to be used * to decode index keys. * </p> * * @return a new blank pattern * @see #decodeIndexKey(char[]) */ public abstract SearchPattern getBlankPattern(); /** * Returns a key to find in relevant index categories, if null then all index entries are matched. * The key will be matched according to some match rule. These potential matches * will be further narrowed by the match locator, but precise match locating can be expensive, * and index query should be as accurate as possible so as to eliminate obvious false hits. * <p> * This method should be re-implemented in subclasses that need to narrow down the * index query. * </p> * * @return an index key from this pattern, or <code>null</code> if all index entries are matched. */ public char[] getIndexKey() { return null; // called from queryIn(), override as necessary } /** * Returns an array of index categories to consider for this index query. * These potential matches will be further narrowed by the match locator, but precise * match locating can be expensive, and index query should be as accurate as possible * so as to eliminate obvious false hits. * <p> * This method should be re-implemented in subclasses that need to narrow down the * index query. * </p> * * @return an array of index categories */ public char[][] getIndexCategories() { return CharOperation.NO_CHAR_CHAR; // called from queryIn(), override as necessary } /** * Returns the rule to apply for matching index keys. Can be exact match, prefix match, pattern match or regexp match. * Rule can also be combined with a case sensitivity flag. * * @return one of R_EXACT_MATCH, R_PREFIX_MATCH, R_PATTERN_MATCH, R_REGEXP_MATCH combined with R_CASE_SENSITIVE, * e.g. R_EXACT_MATCH | R_CASE_SENSITIVE if an exact and case sensitive match is requested, * or R_PREFIX_MATCH if a prefix non case sensitive match is requested. */ public final int getMatchRule() { return this.matchRule; } /** * @noreference This method is not intended to be referenced by clients. * @nooverride This method is not intended to be re-implemented or extended by clients. */ public boolean isPolymorphicSearch() { return false; } /** * Returns whether this pattern matches the given pattern (representing a decoded index key). * <p> * This method should be re-implemented in subclasses that need to narrow down the * index query. * </p> * * @param decodedPattern a pattern representing a decoded index key * @return whether this pattern matches the given pattern */ public boolean matchesDecodedKey(SearchPattern decodedPattern) { return true; // called from findIndexMatches(), override as necessary if index key is encoded } /** * Returns whether the given name matches the given pattern. * <p> * This method should be re-implemented in subclasses that need to define how * a name matches a pattern. * </p> * * @param pattern the given pattern, or <code>null</code> to represent "*" * @param name the given name * @return whether the given name matches the given pattern */ public boolean matchesName(char[] pattern, char[] name) { if (pattern == null) return true; // null is as if it was "*" if (name != null) { boolean isCaseSensitive = (this.matchRule & R_CASE_SENSITIVE) != 0; int matchMode = this.matchRule & MODE_MASK; boolean emptyPattern = pattern.length == 0; if (emptyPattern && (this.matchRule & R_PREFIX_MATCH) != 0) return true; boolean sameLength = pattern.length == name.length; boolean canBePrefix = name.length >= pattern.length; boolean matchFirstChar = !isCaseSensitive || emptyPattern || (name.length > 0 && pattern[0] == name[0]); switch (matchMode) { case R_EXACT_MATCH : if (sameLength && matchFirstChar) { return CharOperation.equals(pattern, name, isCaseSensitive); } break; case R_PREFIX_MATCH : if (canBePrefix && matchFirstChar) { return CharOperation.prefixEquals(pattern, name, isCaseSensitive); } break; case R_PATTERN_MATCH : if (!isCaseSensitive) pattern = CharOperation.toLowerCase(pattern); return CharOperation.match(pattern, name, isCaseSensitive); case SearchPattern.R_CAMELCASE_MATCH: if (matchFirstChar && CharOperation.camelCaseMatch(pattern, name, false)) { return true; } // only test case insensitive as CamelCase already verified prefix case sensitive if (!isCaseSensitive && matchFirstChar && CharOperation.prefixEquals(pattern, name, false)) { return true; } break; case SearchPattern.R_CAMELCASE_SAME_PART_COUNT_MATCH: return matchFirstChar && CharOperation.camelCaseMatch(pattern, name, true); case R_REGEXP_MATCH : // TODO implement regular expression match return true; } } return false; } /** * Validate compatibility between given string pattern and match rule. *<br> * In certain circumstances described in the table below, the returned match rule is * modified in order to provide a more efficient search pattern: * <ol> * <li>when the {@link #R_REGEXP_MATCH} flag is set, then <b>the pattern is * rejected</b> as this kind of match is not supported yet and <code>-1</code> * is returned). * </li> * <li>when the string pattern has <u>no</u> pattern characters (e.g. '*' or '?') * and the pattern match flag is set (i.e. the match rule has the {@link #R_PATTERN_MATCH} * flag), then <b>the pattern match flag is reset</b>.<br> * Reversely, when the string pattern has pattern characters and the pattern * match flag is <u>not</u> set, then <b>the pattern match flag is set</b>. * </li> * <li>when the {@link #R_PATTERN_MATCH} flag is set then, <b>other * {@link #R_PREFIX_MATCH}, {@link #R_CAMELCASE_MATCH} or * {@link #R_CAMELCASE_SAME_PART_COUNT_MATCH} flags are reset</b> * if they are tentatively combined. * </li> * <li>when the {@link #R_CAMELCASE_MATCH} flag is set, then <b>other * {@link #R_PREFIX_MATCH} or {@link #R_CAMELCASE_SAME_PART_COUNT_MATCH} * flags are reset</b> if they are tentatively combined.<br> * Reversely, if the string pattern cannot be a camel case pattern (i.e. contains * invalid Java identifier characters or does not have at least two uppercase * characters - one for method camel case patterns), then <b>the CamelCase * match flag is replaced with a prefix match flag</b>. * </li> * <li>when the {@link #R_CAMELCASE_SAME_PART_COUNT_MATCH} flag is set, * then <b>({@link #R_PREFIX_MATCH} flag is reset</b> if it's tentatively * combined.<br> * Reversely, if the string pattern cannot be a camel case pattern (i.e. contains * invalid Java identifier characters or does not have at least two uppercase * characters - one for method camel case patterns), then <b>the CamelCase * part count match flag is reset</b>. * </li> * </ol> * <i>Note: the rules are validated in the documented order. For example, it means * that as soon as the string pattern contains one pattern character, the pattern * match flag will be set and all other match flags reset: validation of rule 2) * followed by rule 3)...</i> *<p> * * @param stringPattern The string pattern * @param matchRule The match rule * @return Optimized valid match rule or -1 if an incompatibility was detected. * @since 3.2 */ public static int validateMatchRule(String stringPattern, int matchRule) { // Verify Regexp match rule if ((matchRule & R_REGEXP_MATCH) != 0) { if ((matchRule & R_PATTERN_MATCH) != 0 || (matchRule & R_PREFIX_MATCH) != 0 || (matchRule & R_CAMELCASE_MATCH) != 0 || (matchRule & R_CAMELCASE_SAME_PART_COUNT_MATCH) != 0) { // regexp is not supported yet return -1; } } // Verify Pattern match rule if (stringPattern != null) { int starIndex = stringPattern.indexOf('*'); int questionIndex = stringPattern.indexOf('?'); if (starIndex < 0 && questionIndex < 0) { // reset pattern match flag if any matchRule &= ~R_PATTERN_MATCH; } else { // force Pattern rule matchRule |= R_PATTERN_MATCH; } } if ((matchRule & R_PATTERN_MATCH) != 0) { // reset other incompatible flags matchRule &= ~R_CAMELCASE_MATCH; matchRule &= ~R_CAMELCASE_SAME_PART_COUNT_MATCH; matchRule &= ~R_PREFIX_MATCH; return matchRule; } // Verify Camel Case if ((matchRule & R_CAMELCASE_MATCH) != 0) { // reset other incompatible flags matchRule &= ~R_CAMELCASE_SAME_PART_COUNT_MATCH; matchRule &= ~R_PREFIX_MATCH; // validate camel case rule and modify it if not valid boolean validCamelCase = validateCamelCasePattern(stringPattern); if (!validCamelCase) { matchRule &= ~R_CAMELCASE_MATCH; matchRule |= R_PREFIX_MATCH; } return matchRule; } // Verify Camel Case with same count of parts if ((matchRule & R_CAMELCASE_SAME_PART_COUNT_MATCH) != 0) { // reset other incompatible flags matchRule &= ~R_PREFIX_MATCH; // validate camel case rule and modify it if not valid boolean validCamelCase = validateCamelCasePattern(stringPattern); if (!validCamelCase) { matchRule &= ~R_CAMELCASE_SAME_PART_COUNT_MATCH; } return matchRule; } // Return the validated match rule (modified if necessary) return matchRule; } /* * Validate pattern for a camel case match rule * @return */ private static boolean validateCamelCasePattern(String stringPattern) { if (stringPattern == null) return true; // verify sting pattern validity int length = stringPattern.length(); boolean validCamelCase = true; boolean lowerCamelCase = false; int uppercase = 0; for (int i=0; i<length && validCamelCase; i++) { char ch = stringPattern.charAt(i); validCamelCase = i==0 ? ScannerHelper.isJavaIdentifierStart(ch) : ScannerHelper.isJavaIdentifierPart(ch); // at least one uppercase character is need in CamelCase pattern // (see bug https://bugs.eclipse.org/bugs/show_bug.cgi?id=136313) if (ScannerHelper.isUpperCase(ch)) uppercase++; if (i==0) lowerCamelCase = uppercase == 0; } if (validCamelCase) { validCamelCase = lowerCamelCase ? uppercase > 0 : uppercase > 1 ; } return validCamelCase; } /** * @noreference This method is not intended to be referenced by clients. * @nooverride This method is not intended to be re-implemented or extended by clients. */ public EntryResult[] queryIn(Index index) throws IOException { return index.query(getIndexCategories(), getIndexKey(), getMatchRule()); } /** * @see java.lang.Object#toString() */ public String toString() { return "SearchPattern"; //$NON-NLS-1$ } }