/******************************************************************************* * Copyright (c) 2000, 2010 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: * IBM Corporation - initial API and implementation * Stephan Herrmann - Contribution for bug 236385 *******************************************************************************/ package org.eclipse.jdt.internal.compiler.ast; import org.eclipse.jdt.internal.compiler.ASTVisitor; import org.eclipse.jdt.internal.compiler.classfmt.ClassFileConstants; import org.eclipse.jdt.internal.compiler.codegen.CodeStream; import org.eclipse.jdt.internal.compiler.codegen.Opcodes; import org.eclipse.jdt.internal.compiler.flow.FlowContext; import org.eclipse.jdt.internal.compiler.flow.FlowInfo; import org.eclipse.jdt.internal.compiler.impl.Constant; import org.eclipse.jdt.internal.compiler.lookup.Binding; import org.eclipse.jdt.internal.compiler.lookup.BlockScope; import org.eclipse.jdt.internal.compiler.lookup.ExtraCompilerModifiers; import org.eclipse.jdt.internal.compiler.lookup.InvocationSite; import org.eclipse.jdt.internal.compiler.lookup.LocalTypeBinding; import org.eclipse.jdt.internal.compiler.lookup.LocalVariableBinding; import org.eclipse.jdt.internal.compiler.lookup.MethodBinding; import org.eclipse.jdt.internal.compiler.lookup.NestedTypeBinding; import org.eclipse.jdt.internal.compiler.lookup.ProblemMethodBinding; import org.eclipse.jdt.internal.compiler.lookup.RawTypeBinding; import org.eclipse.jdt.internal.compiler.lookup.ReferenceBinding; import org.eclipse.jdt.internal.compiler.lookup.SourceTypeBinding; import org.eclipse.jdt.internal.compiler.lookup.SyntheticArgumentBinding; import org.eclipse.jdt.internal.compiler.lookup.TagBits; import org.eclipse.jdt.internal.compiler.lookup.TypeBinding; import org.eclipse.jdt.internal.compiler.lookup.TypeConstants; import org.eclipse.jdt.internal.compiler.lookup.TypeIds; public class AllocationExpression extends Expression implements InvocationSite { public TypeReference type; public Expression[] arguments; public MethodBinding binding; // exact binding resulting from lookup MethodBinding syntheticAccessor; // synthetic accessor for inner-emulation public TypeReference[] typeArguments; public TypeBinding[] genericTypeArguments; public FieldDeclaration enumConstant; // for enum constant initializations public FlowInfo analyseCode(BlockScope currentScope, FlowContext flowContext, FlowInfo flowInfo) { // check captured variables are initialized in current context (26134) checkCapturedLocalInitializationIfNecessary((ReferenceBinding)this.binding.declaringClass.erasure(), currentScope, flowInfo); // process arguments if (this.arguments != null) { for (int i= 0, count= this.arguments.length; i < count; i++) { flowInfo= this.arguments[i] .analyseCode(currentScope, flowContext, flowInfo) .unconditionalInits(); } } // record some dependency information for exception types ReferenceBinding[] thrownExceptions; if (((thrownExceptions= this.binding.thrownExceptions).length) != 0) { if ((this.bits & ASTNode.Unchecked) != 0 && this.genericTypeArguments == null) { // https://bugs.eclipse.org/bugs/show_bug.cgi?id=277643, align with javac on JLS 15.12.2.6 thrownExceptions= currentScope.environment().convertToRawTypes(this.binding.thrownExceptions, true, true); } // check exception handling flowContext.checkExceptionHandlers( thrownExceptions, this, flowInfo.unconditionalCopy(), currentScope); } manageEnclosingInstanceAccessIfNecessary(currentScope, flowInfo); manageSyntheticAccessIfNecessary(currentScope, flowInfo); return flowInfo; } public void checkCapturedLocalInitializationIfNecessary(ReferenceBinding checkedType, BlockScope currentScope, FlowInfo flowInfo) { if (((checkedType.tagBits & (TagBits.AnonymousTypeMask | TagBits.LocalTypeMask)) == TagBits.LocalTypeMask) && !currentScope.isDefinedInType(checkedType)) { // only check external allocations NestedTypeBinding nestedType= (NestedTypeBinding)checkedType; SyntheticArgumentBinding[] syntheticArguments= nestedType.syntheticOuterLocalVariables(); if (syntheticArguments != null) for (int i= 0, count= syntheticArguments.length; i < count; i++) { SyntheticArgumentBinding syntheticArgument= syntheticArguments[i]; LocalVariableBinding targetLocal; if ((targetLocal= syntheticArgument.actualOuterLocalVariable) == null) continue; if (targetLocal.declaration != null && !flowInfo.isDefinitelyAssigned(targetLocal)) { currentScope.problemReporter().uninitializedLocalVariable(targetLocal, this); } } } } public Expression enclosingInstance() { return null; } public void generateCode(BlockScope currentScope, CodeStream codeStream, boolean valueRequired) { if (!valueRequired) currentScope.problemReporter().unusedObjectAllocation(this); int pc= codeStream.position; MethodBinding codegenBinding= this.binding.original(); ReferenceBinding allocatedType= codegenBinding.declaringClass; codeStream.new_(allocatedType); boolean isUnboxing= (this.implicitConversion & TypeIds.UNBOXING) != 0; if (valueRequired || isUnboxing) { codeStream.dup(); } // better highlight for allocation: display the type individually if (this.type != null) { // null for enum constant body codeStream.recordPositionsFrom(pc, this.type.sourceStart); } else { // push enum constant name and ordinal codeStream.ldc(String.valueOf(this.enumConstant.name)); codeStream.generateInlinedValue(this.enumConstant.binding.id); } // handling innerclass instance allocation - enclosing instance arguments if (allocatedType.isNestedType()) { codeStream.generateSyntheticEnclosingInstanceValues( currentScope, allocatedType, enclosingInstance(), this); } // generate the arguments for constructor generateArguments(this.binding, this.arguments, currentScope, codeStream); // handling innerclass instance allocation - outer local arguments if (allocatedType.isNestedType()) { codeStream.generateSyntheticOuterArgumentValues( currentScope, allocatedType, this); } // invoke constructor if (this.syntheticAccessor == null) { codeStream.invoke(Opcodes.OPC_invokespecial, codegenBinding, null /* default declaringClass */); } else { // synthetic accessor got some extra arguments appended to its signature, which need values for (int i= 0, max= this.syntheticAccessor.parameters.length - codegenBinding.parameters.length; i < max; i++) { codeStream.aconst_null(); } codeStream.invoke(Opcodes.OPC_invokespecial, this.syntheticAccessor, null /* default declaringClass */); } if (valueRequired) { codeStream.generateImplicitConversion(this.implicitConversion); } else if (isUnboxing) { // conversion only generated if unboxing codeStream.generateImplicitConversion(this.implicitConversion); switch (postConversionType(currentScope).id) { case T_long: case T_double: codeStream.pop2(); break; default: codeStream.pop(); } } codeStream.recordPositionsFrom(pc, this.sourceStart); } /** * @see org.eclipse.jdt.internal.compiler.lookup.InvocationSite#genericTypeArguments() */ public TypeBinding[] genericTypeArguments() { return this.genericTypeArguments; } public boolean isSuperAccess() { return false; } public boolean isTypeAccess() { return true; } /* Inner emulation consists in either recording a dependency * link only, or performing one level of propagation. * * Dependency mechanism is used whenever dealing with source target * types, since by the time we reach them, we might not yet know their * exact need. */ public void manageEnclosingInstanceAccessIfNecessary(BlockScope currentScope, FlowInfo flowInfo) { if ((flowInfo.tagBits & FlowInfo.UNREACHABLE) != 0) return; ReferenceBinding allocatedTypeErasure= (ReferenceBinding)this.binding.declaringClass.erasure(); // perform some emulation work in case there is some and we are inside a local type only if (allocatedTypeErasure.isNestedType() && currentScope.enclosingSourceType().isLocalType()) { if (allocatedTypeErasure.isLocalType()) { ((LocalTypeBinding)allocatedTypeErasure).addInnerEmulationDependent(currentScope, false); // request cascade of accesses } else { // locally propagate, since we already now the desired shape for sure currentScope.propagateInnerEmulation(allocatedTypeErasure, false); // request cascade of accesses } } } public void manageSyntheticAccessIfNecessary(BlockScope currentScope, FlowInfo flowInfo) { if ((flowInfo.tagBits & FlowInfo.UNREACHABLE) != 0) return; // if constructor from parameterized type got found, use the original constructor at codegen time MethodBinding codegenBinding= this.binding.original(); ReferenceBinding declaringClass; if (codegenBinding.isPrivate() && currentScope.enclosingSourceType() != (declaringClass= codegenBinding.declaringClass)) { // from 1.4 on, local type constructor can lose their private flag to ease emulation if ((declaringClass.tagBits & TagBits.IsLocalType) != 0 && currentScope.compilerOptions().complianceLevel >= ClassFileConstants.JDK1_4) { // constructor will not be dumped as private, no emulation required thus codegenBinding.tagBits|= TagBits.ClearPrivateModifier; } else { this.syntheticAccessor= ((SourceTypeBinding)declaringClass).addSyntheticMethod(codegenBinding, isSuperAccess()); currentScope.problemReporter().needToEmulateMethodAccess(codegenBinding, this); } } } public StringBuffer printExpression(int indent, StringBuffer output) { if (this.type != null) { // type null for enum constant initializations output.append("new "); //$NON-NLS-1$ } if (this.typeArguments != null) { output.append('<'); int max= this.typeArguments.length - 1; for (int j= 0; j < max; j++) { this.typeArguments[j].print(0, output); output.append(", ");//$NON-NLS-1$ } this.typeArguments[max].print(0, output); output.append('>'); } if (this.type != null) { // type null for enum constant initializations this.type.printExpression(0, output); } output.append('('); if (this.arguments != null) { for (int i= 0; i < this.arguments.length; i++) { if (i > 0) output.append(", "); //$NON-NLS-1$ this.arguments[i].printExpression(0, output); } } return output.append(')'); } public TypeBinding resolveType(BlockScope scope) { // Propagate the type checking to the arguments, and check if the constructor is defined. this.constant= Constant.NotAConstant; if (this.type == null) { // initialization of an enum constant this.resolvedType= scope.enclosingReceiverType(); } else { this.resolvedType= this.type.resolveType(scope, true /* check bounds*/); checkParameterizedAllocation: { if (this.type instanceof ParameterizedQualifiedTypeReference) { // disallow new X<String>.Y<Integer>() ReferenceBinding currentType= (ReferenceBinding)this.resolvedType; if (currentType == null) return currentType; do { // isStatic() is answering true for toplevel types if ((currentType.modifiers & ClassFileConstants.AccStatic) != 0) break checkParameterizedAllocation; if (currentType.isRawType()) break checkParameterizedAllocation; } while ((currentType= currentType.enclosingType()) != null); ParameterizedQualifiedTypeReference qRef= (ParameterizedQualifiedTypeReference)this.type; for (int i= qRef.typeArguments.length - 2; i >= 0; i--) { if (qRef.typeArguments[i] != null) { scope.problemReporter().illegalQualifiedParameterizedTypeAllocation(this.type, this.resolvedType); break; } } } } } // will check for null after args are resolved // resolve type arguments (for generic constructor call) if (this.typeArguments != null) { int length= this.typeArguments.length; boolean argHasError= scope.compilerOptions().sourceLevel < ClassFileConstants.JDK1_5; this.genericTypeArguments= new TypeBinding[length]; for (int i= 0; i < length; i++) { TypeReference typeReference= this.typeArguments[i]; if ((this.genericTypeArguments[i]= typeReference.resolveType(scope, true /* check bounds*/)) == null) { argHasError= true; } if (argHasError && typeReference instanceof Wildcard) { scope.problemReporter().illegalUsageOfWildcard(typeReference); } } if (argHasError) { if (this.arguments != null) { // still attempt to resolve arguments for (int i= 0, max= this.arguments.length; i < max; i++) { this.arguments[i].resolveType(scope); } } return null; } } // buffering the arguments' types boolean argsContainCast= false; TypeBinding[] argumentTypes= Binding.NO_PARAMETERS; if (this.arguments != null) { boolean argHasError= false; int length= this.arguments.length; argumentTypes= new TypeBinding[length]; for (int i= 0; i < length; i++) { Expression argument= this.arguments[i]; if (argument instanceof CastExpression) { argument.bits|= DisableUnnecessaryCastCheck; // will check later on argsContainCast= true; } if ((argumentTypes[i]= argument.resolveType(scope)) == null) { argHasError= true; } } if (argHasError) { if (this.resolvedType instanceof ReferenceBinding) { // record a best guess, for clients who need hint about possible contructor match TypeBinding[] pseudoArgs= new TypeBinding[length]; for (int i= length; --i >= 0;) { pseudoArgs[i]= argumentTypes[i] == null ? TypeBinding.NULL : argumentTypes[i]; // replace args with errors with null type } this.binding= scope.findMethod((ReferenceBinding)this.resolvedType, TypeConstants.INIT, pseudoArgs, this); if (this.binding != null && !this.binding.isValidBinding()) { MethodBinding closestMatch= ((ProblemMethodBinding)this.binding).closestMatch; // record the closest match, for clients who may still need hint about possible method match if (closestMatch != null) { if (closestMatch.original().typeVariables != Binding.NO_TYPE_VARIABLES) { // generic method // shouldn't return generic method outside its context, rather convert it to raw method (175409) closestMatch= scope.environment().createParameterizedGenericMethod(closestMatch.original(), (RawTypeBinding)null); } this.binding= closestMatch; MethodBinding closestMatchOriginal= closestMatch.original(); if (closestMatchOriginal.isOrEnclosedByPrivateType() && !scope.isDefinedInMethod(closestMatchOriginal)) { // ignore cases where method is used from within inside itself (e.g. direct recursions) closestMatchOriginal.modifiers|= ExtraCompilerModifiers.AccLocallyUsed; } } } } return this.resolvedType; } } if (this.resolvedType == null || !this.resolvedType.isValidBinding()) { return null; } // null type denotes fake allocation for enum constant inits if (this.type != null && !this.resolvedType.canBeInstantiated()) { scope.problemReporter().cannotInstantiate(this.type, this.resolvedType); return this.resolvedType; } ReferenceBinding allocationType= (ReferenceBinding)this.resolvedType; if (!(this.binding= scope.getConstructor(allocationType, argumentTypes, this)).isValidBinding()) { if (this.binding.declaringClass == null) { this.binding.declaringClass= allocationType; } if (this.type != null && !this.type.resolvedType.isValidBinding()) { return null; } scope.problemReporter().invalidConstructor(this, this.binding); return this.resolvedType; } if ((this.binding.tagBits & TagBits.HasMissingType) != 0) { scope.problemReporter().missingTypeInConstructor(this, this.binding); } if (isMethodUseDeprecated(this.binding, scope, true)) scope.problemReporter().deprecatedMethod(this.binding, this); if (checkInvocationArguments(scope, null, allocationType, this.binding, this.arguments, argumentTypes, argsContainCast, this)) { this.bits|= ASTNode.Unchecked; } if (this.typeArguments != null && this.binding.original().typeVariables == Binding.NO_TYPE_VARIABLES) { scope.problemReporter().unnecessaryTypeArgumentsForMethodInvocation(this.binding, this.genericTypeArguments, this.typeArguments); } return allocationType; } public void setActualReceiverType(ReferenceBinding receiverType) { // ignored } public void setDepth(int i) { // ignored } public void setFieldIndex(int i) { // ignored } public void traverse(ASTVisitor visitor, BlockScope scope) { if (visitor.visit(this, scope)) { if (this.typeArguments != null) { for (int i= 0, typeArgumentsLength= this.typeArguments.length; i < typeArgumentsLength; i++) { this.typeArguments[i].traverse(visitor, scope); } } if (this.type != null) { // enum constant scenario this.type.traverse(visitor, scope); } if (this.arguments != null) { for (int i= 0, argumentsLength= this.arguments.length; i < argumentsLength; i++) this.arguments[i].traverse(visitor, scope); } } visitor.endVisit(this, scope); } }