/******************************************************************************* * Copyright (c) 2000, 2010 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package org.eclipse.jdt.internal.compiler; /** * A compilation result consists of all information returned by the compiler for * a single compiled compilation source unit. This includes: * <ul> * <li> the compilation unit that was compiled * <li> for each type produced by compiling the compilation unit, its binary and optionally its principal structure * <li> any problems (errors or warnings) produced * <li> dependency info * </ul> * * The principle structure and binary may be null if the compiler could not produce them. * If neither could be produced, there is no corresponding entry for the type. * * The dependency info includes type references such as supertypes, field types, method * parameter and return types, local variable types, types of intermediate expressions, etc. * It also includes the namespaces (packages) in which names were looked up. * It does <em>not</em> include finer grained dependencies such as information about * specific fields and methods which were referenced, but does contain their * declaring types and any other types used to locate such fields or methods. */ import java.util.Arrays; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.Hashtable; import java.util.Iterator; import java.util.Map; import java.util.Set; import org.eclipse.jdt.core.compiler.CategorizedProblem; import org.eclipse.jdt.core.compiler.IProblem; import org.eclipse.jdt.internal.compiler.ast.AbstractMethodDeclaration; import org.eclipse.jdt.internal.compiler.env.ICompilationUnit; import org.eclipse.jdt.internal.compiler.impl.ReferenceContext; import org.eclipse.jdt.internal.compiler.lookup.SourceTypeBinding; import org.eclipse.jdt.internal.compiler.parser.RecoveryScannerData; import org.eclipse.jdt.internal.compiler.util.Util; public class CompilationResult { public CategorizedProblem problems[]; public CategorizedProblem tasks[]; public int problemCount; public int taskCount; public ICompilationUnit compilationUnit; public Map problemsMap; public Set firstErrors; private int maxProblemPerUnit; public char[][][] qualifiedReferences; public char[][] simpleNameReferences; public char[][] rootReferences; public boolean hasAnnotations= false; public int lineSeparatorPositions[]; public RecoveryScannerData recoveryScannerData; public Map compiledTypes= new Hashtable(11); public int unitIndex, totalUnitsKnown; public boolean hasBeenAccepted= false; public char[] fileName; public boolean hasInconsistentToplevelHierarchies= false; // record the fact some toplevel types have inconsistent hierarchies public boolean hasSyntaxError= false; public char[][] packageName; public boolean checkSecondaryTypes= false; // check for secondary types which were created after the initial buildTypeBindings call private static final int[] EMPTY_LINE_ENDS= Util.EMPTY_INT_ARRAY; private static final Comparator PROBLEM_COMPARATOR= new Comparator() { public int compare(Object o1, Object o2) { return ((CategorizedProblem)o1).getSourceStart() - ((CategorizedProblem)o2).getSourceStart(); } }; public CompilationResult(char[] fileName, int unitIndex, int totalUnitsKnown, int maxProblemPerUnit) { this.fileName= fileName; this.unitIndex= unitIndex; this.totalUnitsKnown= totalUnitsKnown; this.maxProblemPerUnit= maxProblemPerUnit; } public CompilationResult(ICompilationUnit compilationUnit, int unitIndex, int totalUnitsKnown, int maxProblemPerUnit) { this.fileName= compilationUnit.getFileName(); this.compilationUnit= compilationUnit; this.unitIndex= unitIndex; this.totalUnitsKnown= totalUnitsKnown; this.maxProblemPerUnit= maxProblemPerUnit; } private int computePriority(CategorizedProblem problem) { final int P_STATIC= 10000; final int P_OUTSIDE_METHOD= 40000; final int P_FIRST_ERROR= 20000; final int P_ERROR= 100000; int priority= 10000 - problem.getSourceLineNumber(); // early problems first if (priority < 0) priority= 0; if (problem.isError()) { priority+= P_ERROR; } ReferenceContext context= this.problemsMap == null ? null : (ReferenceContext)this.problemsMap.get(problem); if (context != null) { if (context instanceof AbstractMethodDeclaration) { AbstractMethodDeclaration method= (AbstractMethodDeclaration)context; if (method.isStatic()) { priority+= P_STATIC; } } else { priority+= P_OUTSIDE_METHOD; } if (this.firstErrors.contains(problem)) { // if context is null, firstErrors is null too priority+= P_FIRST_ERROR; } } else { priority+= P_OUTSIDE_METHOD; } return priority; } public CategorizedProblem[] getAllProblems() { CategorizedProblem[] onlyProblems= getProblems(); int onlyProblemCount= onlyProblems != null ? onlyProblems.length : 0; CategorizedProblem[] onlyTasks= getTasks(); int onlyTaskCount= onlyTasks != null ? onlyTasks.length : 0; if (onlyTaskCount == 0) { return onlyProblems; } if (onlyProblemCount == 0) { return onlyTasks; } int totalNumberOfProblem= onlyProblemCount + onlyTaskCount; CategorizedProblem[] allProblems= new CategorizedProblem[totalNumberOfProblem]; int allProblemIndex= 0; int taskIndex= 0; int problemIndex= 0; while (taskIndex + problemIndex < totalNumberOfProblem) { CategorizedProblem nextTask= null; CategorizedProblem nextProblem= null; if (taskIndex < onlyTaskCount) { nextTask= onlyTasks[taskIndex]; } if (problemIndex < onlyProblemCount) { nextProblem= onlyProblems[problemIndex]; } // select the next problem CategorizedProblem currentProblem= null; if (nextProblem != null) { if (nextTask != null) { if (nextProblem.getSourceStart() < nextTask.getSourceStart()) { currentProblem= nextProblem; problemIndex++; } else { currentProblem= nextTask; taskIndex++; } } else { currentProblem= nextProblem; problemIndex++; } } else { if (nextTask != null) { currentProblem= nextTask; taskIndex++; } } allProblems[allProblemIndex++]= currentProblem; } return allProblems; } public ClassFile[] getClassFiles() { ClassFile[] classFiles= new ClassFile[this.compiledTypes.size()]; this.compiledTypes.values().toArray(classFiles); return classFiles; } /** * Answer the initial compilation unit corresponding to the present compilation result */ public ICompilationUnit getCompilationUnit() { return this.compilationUnit; } /** * Answer the errors encountered during compilation. */ public CategorizedProblem[] getErrors() { CategorizedProblem[] reportedProblems= getProblems(); int errorCount= 0; for (int i= 0; i < this.problemCount; i++) { if (reportedProblems[i].isError()) errorCount++; } if (errorCount == this.problemCount) return reportedProblems; CategorizedProblem[] errors= new CategorizedProblem[errorCount]; int index= 0; for (int i= 0; i < this.problemCount; i++) { if (reportedProblems[i].isError()) errors[index++]= reportedProblems[i]; } return errors; } /** * Answer the initial file name */ public char[] getFileName() { return this.fileName; } public int[] getLineSeparatorPositions() { return this.lineSeparatorPositions == null ? CompilationResult.EMPTY_LINE_ENDS : this.lineSeparatorPositions; } /** * Answer the problems (errors and warnings) encountered during compilation. * * This is not a compiler internal API - it has side-effects ! It is intended to be used only * once all problems have been detected, and makes sure the problems slot as the exact size of * the number of problems. */ public CategorizedProblem[] getProblems() { // Re-adjust the size of the problems if necessary. if (this.problems != null) { if (this.problemCount != this.problems.length) { System.arraycopy(this.problems, 0, (this.problems= new CategorizedProblem[this.problemCount]), 0, this.problemCount); } if (this.maxProblemPerUnit > 0 && this.problemCount > this.maxProblemPerUnit) { quickPrioritize(this.problems, 0, this.problemCount - 1); this.problemCount= this.maxProblemPerUnit; System.arraycopy(this.problems, 0, (this.problems= new CategorizedProblem[this.problemCount]), 0, this.problemCount); } // Stable sort problems per source positions. Arrays.sort(this.problems, 0, this.problems.length, CompilationResult.PROBLEM_COMPARATOR); //quickSort(problems, 0, problems.length-1); } return this.problems; } /** * Answer the tasks (TO-DO, ...) encountered during compilation. * * This is not a compiler internal API - it has side-effects ! It is intended to be used only * once all problems have been detected, and makes sure the problems slot as the exact size of * the number of problems. */ public CategorizedProblem[] getTasks() { // Re-adjust the size of the tasks if necessary. if (this.tasks != null) { if (this.taskCount != this.tasks.length) { System.arraycopy(this.tasks, 0, (this.tasks= new CategorizedProblem[this.taskCount]), 0, this.taskCount); } // Stable sort problems per source positions. Arrays.sort(this.tasks, 0, this.tasks.length, CompilationResult.PROBLEM_COMPARATOR); //quickSort(tasks, 0, tasks.length-1); } return this.tasks; } public boolean hasErrors() { if (this.problems != null) for (int i= 0; i < this.problemCount; i++) { if (this.problems[i].isError()) return true; } return false; } public boolean hasProblems() { return this.problemCount != 0; } public boolean hasTasks() { return this.taskCount != 0; } public boolean hasWarnings() { if (this.problems != null) for (int i= 0; i < this.problemCount; i++) { if (this.problems[i].isWarning()) return true; } return false; } private void quickPrioritize(CategorizedProblem[] problemList, int left, int right) { if (left >= right) return; // sort the problems by their priority... starting with the highest priority int original_left= left; int original_right= right; int mid= computePriority(problemList[left + (right - left) / 2]); do { while (computePriority(problemList[right]) < mid) right--; while (mid < computePriority(problemList[left])) left++; if (left <= right) { CategorizedProblem tmp= problemList[left]; problemList[left]= problemList[right]; problemList[right]= tmp; left++; right--; } } while (left <= right); if (original_left < right) quickPrioritize(problemList, original_left, right); if (left < original_right) quickPrioritize(problemList, left, original_right); } /* * Record the compilation unit result's package name */ public void recordPackageName(char[][] packName) { this.packageName= packName; } public void record(CategorizedProblem newProblem, ReferenceContext referenceContext) { //new Exception("VERBOSE PROBLEM REPORTING").printStackTrace(); if (newProblem.getID() == IProblem.Task) { recordTask(newProblem); return; } if (this.problemCount == 0) { this.problems= new CategorizedProblem[5]; } else if (this.problemCount == this.problems.length) { System.arraycopy(this.problems, 0, (this.problems= new CategorizedProblem[this.problemCount * 2]), 0, this.problemCount); } this.problems[this.problemCount++]= newProblem; if (referenceContext != null) { if (this.problemsMap == null) this.problemsMap= new HashMap(5); if (this.firstErrors == null) this.firstErrors= new HashSet(5); if (newProblem.isError() && !referenceContext.hasErrors()) this.firstErrors.add(newProblem); this.problemsMap.put(newProblem, referenceContext); } if ((newProblem.getID() & IProblem.Syntax) != 0 && newProblem.isError()) this.hasSyntaxError= true; } /** * For now, remember the compiled type using its compound name. */ public void record(char[] typeName, ClassFile classFile) { SourceTypeBinding sourceType= classFile.referenceBinding; if (!sourceType.isLocalType() && sourceType.isHierarchyInconsistent()) { this.hasInconsistentToplevelHierarchies= true; } this.compiledTypes.put(typeName, classFile); } private void recordTask(CategorizedProblem newProblem) { if (this.taskCount == 0) { this.tasks= new CategorizedProblem[5]; } else if (this.taskCount == this.tasks.length) { System.arraycopy(this.tasks, 0, (this.tasks= new CategorizedProblem[this.taskCount * 2]), 0, this.taskCount); } this.tasks[this.taskCount++]= newProblem; } public CompilationResult tagAsAccepted() { this.hasBeenAccepted= true; this.problemsMap= null; // flush this.firstErrors= null; // flush return this; } public String toString() { StringBuffer buffer= new StringBuffer(); if (this.fileName != null) { buffer.append("Filename : ").append(this.fileName).append('\n'); //$NON-NLS-1$ } if (this.compiledTypes != null) { buffer.append("COMPILED type(s) \n"); //$NON-NLS-1$ Iterator keys= this.compiledTypes.keySet().iterator(); while (keys.hasNext()) { char[] typeName= (char[])keys.next(); buffer.append("\t - ").append(typeName).append('\n'); //$NON-NLS-1$ } } else { buffer.append("No COMPILED type\n"); //$NON-NLS-1$ } if (this.problems != null) { buffer.append(this.problemCount).append(" PROBLEM(s) detected \n"); //$NON-NLS-1$ for (int i= 0; i < this.problemCount; i++) { buffer.append("\t - ").append(this.problems[i]).append('\n'); //$NON-NLS-1$ } } else { buffer.append("No PROBLEM\n"); //$NON-NLS-1$ } return buffer.toString(); } }