/******************************************************************************* * Copyright (c) 2000, 2009 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package org.eclipse.jdt.internal.compiler.ast; import org.eclipse.jdt.internal.compiler.ASTVisitor; import org.eclipse.jdt.internal.compiler.codegen.CodeStream; import org.eclipse.jdt.internal.compiler.flow.FlowContext; import org.eclipse.jdt.internal.compiler.flow.FlowInfo; import org.eclipse.jdt.internal.compiler.impl.Constant; import org.eclipse.jdt.internal.compiler.lookup.ArrayBinding; import org.eclipse.jdt.internal.compiler.lookup.BlockScope; import org.eclipse.jdt.internal.compiler.lookup.TypeBinding; public class ArrayInitializer extends Expression { public Expression[] expressions; public ArrayBinding binding; //the type of the { , , , } /** * ArrayInitializer constructor comment. */ public ArrayInitializer() { super(); } public FlowInfo analyseCode(BlockScope currentScope, FlowContext flowContext, FlowInfo flowInfo) { if (this.expressions != null) { for (int i= 0, max= this.expressions.length; i < max; i++) { flowInfo= this.expressions[i].analyseCode(currentScope, flowContext, flowInfo).unconditionalInits(); } } return flowInfo; } /** * Code generation for a array initializer */ public void generateCode(BlockScope currentScope, CodeStream codeStream, boolean valueRequired) { // Flatten the values and compute the dimensions, by iterating in depth into nested array initializers int pc= codeStream.position; int expressionLength= (this.expressions == null) ? 0 : this.expressions.length; codeStream.generateInlinedValue(expressionLength); codeStream.newArray(this.binding); if (this.expressions != null) { // binding is an ArrayType, so I can just deal with the dimension int elementsTypeID= this.binding.dimensions > 1 ? -1 : this.binding.leafComponentType.id; for (int i= 0; i < expressionLength; i++) { Expression expr; if ((expr= this.expressions[i]).constant != Constant.NotAConstant) { switch (elementsTypeID) { // filter out initializations to default values case T_int: case T_short: case T_byte: case T_char: case T_long: if (expr.constant.longValue() != 0) { codeStream.dup(); codeStream.generateInlinedValue(i); expr.generateCode(currentScope, codeStream, true); codeStream.arrayAtPut(elementsTypeID, false); } break; case T_float: case T_double: double constantValue= expr.constant.doubleValue(); if (constantValue == -0.0 || constantValue != 0) { codeStream.dup(); codeStream.generateInlinedValue(i); expr.generateCode(currentScope, codeStream, true); codeStream.arrayAtPut(elementsTypeID, false); } break; case T_boolean: if (expr.constant.booleanValue() != false) { codeStream.dup(); codeStream.generateInlinedValue(i); expr.generateCode(currentScope, codeStream, true); codeStream.arrayAtPut(elementsTypeID, false); } break; default: if (!(expr instanceof NullLiteral)) { codeStream.dup(); codeStream.generateInlinedValue(i); expr.generateCode(currentScope, codeStream, true); codeStream.arrayAtPut(elementsTypeID, false); } } } else if (!(expr instanceof NullLiteral)) { codeStream.dup(); codeStream.generateInlinedValue(i); expr.generateCode(currentScope, codeStream, true); codeStream.arrayAtPut(elementsTypeID, false); } } } if (valueRequired) { codeStream.generateImplicitConversion(this.implicitConversion); } else { codeStream.pop(); } codeStream.recordPositionsFrom(pc, this.sourceStart); } public StringBuffer printExpression(int indent, StringBuffer output) { output.append('{'); if (this.expressions != null) { int j= 20; for (int i= 0; i < this.expressions.length; i++) { if (i > 0) output.append(", "); //$NON-NLS-1$ this.expressions[i].printExpression(0, output); j--; if (j == 0) { output.append('\n'); printIndent(indent + 1, output); j= 20; } } } return output.append('}'); } public TypeBinding resolveTypeExpecting(BlockScope scope, TypeBinding expectedType) { // Array initializers can only occur on the right hand side of an assignment // expression, therefore the expected type contains the valid information // concerning the type that must be enforced by the elements of the array initializer. // this method is recursive... (the test on isArrayType is the stop case) this.constant= Constant.NotAConstant; if (expectedType instanceof ArrayBinding) { // allow new List<?>[5] if ((this.bits & IsAnnotationDefaultValue) == 0) { // annotation default value need only to be commensurate JLS9.7 // allow new List<?>[5] - only check for generic array when no initializer, since also checked inside initializer resolution TypeBinding leafComponentType= expectedType.leafComponentType(); if (!leafComponentType.isReifiable()) { scope.problemReporter().illegalGenericArray(leafComponentType, this); } } this.resolvedType= this.binding= (ArrayBinding)expectedType; if (this.expressions == null) return this.binding; TypeBinding elementType= this.binding.elementsType(); for (int i= 0, length= this.expressions.length; i < length; i++) { Expression expression= this.expressions[i]; expression.setExpectedType(elementType); TypeBinding expressionType= expression instanceof ArrayInitializer ? expression.resolveTypeExpecting(scope, elementType) : expression.resolveType(scope); if (expressionType == null) continue; // Compile-time conversion required? if (elementType != expressionType) // must call before computeConversion() and typeMismatchError() scope.compilationUnitScope().recordTypeConversion(elementType, expressionType); if (expression.isConstantValueOfTypeAssignableToType(expressionType, elementType) || expressionType.isCompatibleWith(elementType)) { expression.computeConversion(scope, elementType, expressionType); } else if (isBoxingCompatible(expressionType, elementType, expression, scope)) { expression.computeConversion(scope, elementType, expressionType); } else { scope.problemReporter().typeMismatchError(expressionType, elementType, expression, null); } } return this.binding; } // infer initializer type for error reporting based on first element TypeBinding leafElementType= null; int dim= 1; if (this.expressions == null) { leafElementType= scope.getJavaLangObject(); } else { Expression expression= this.expressions[0]; while (expression != null && expression instanceof ArrayInitializer) { dim++; Expression[] subExprs= ((ArrayInitializer)expression).expressions; if (subExprs == null) { leafElementType= scope.getJavaLangObject(); expression= null; break; } expression= ((ArrayInitializer)expression).expressions[0]; } if (expression != null) { leafElementType= expression.resolveType(scope); } // fault-tolerance - resolve other expressions as well for (int i= 1, length= this.expressions.length; i < length; i++) { expression= this.expressions[i]; if (expression != null) { expression.resolveType(scope); } } } if (leafElementType != null) { this.resolvedType= scope.createArrayType(leafElementType, dim); if (expectedType != null) scope.problemReporter().typeMismatchError(this.resolvedType, expectedType, this, null); } return null; } public void traverse(ASTVisitor visitor, BlockScope scope) { if (visitor.visit(this, scope)) { if (this.expressions != null) { int expressionsLength= this.expressions.length; for (int i= 0; i < expressionsLength; i++) this.expressions[i].traverse(visitor, scope); } } visitor.endVisit(this, scope); } }