/* * Copyright 1998-2014 University Corporation for Atmospheric Research/Unidata * * Portions of this software were developed by the Unidata Program at the * University Corporation for Atmospheric Research. * * Access and use of this software shall impose the following obligations * and understandings on the user. The user is granted the right, without * any fee or cost, to use, copy, modify, alter, enhance and distribute * this software, and any derivative works thereof, and its supporting * documentation for any purpose whatsoever, provided that this entire * notice appears in all copies of the software, derivative works and * supporting documentation. Further, UCAR requests that the user credit * UCAR/Unidata in any publications that result from the use of this * software or in any product that includes this software. The names UCAR * and/or Unidata, however, may not be used in any advertising or publicity * to endorse or promote any products or commercial entity unless specific * written permission is obtained from UCAR/Unidata. The user also * understands that UCAR/Unidata is not obligated to provide the user with * any support, consulting, training or assistance of any kind with regard * to the use, operation and performance of this software nor to provide * the user with any updates, revisions, new versions or "bug fixes." * * THIS SOFTWARE IS PROVIDED BY UCAR/UNIDATA "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL UCAR/UNIDATA BE LIABLE FOR ANY SPECIAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING * FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION * WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE. */ package ucar.nc2.dataset.transform; import ucar.nc2.constants.CF; import ucar.nc2.dataset.CoordinateTransform; import ucar.nc2.dataset.ProjectionCT; import ucar.nc2.dataset.TransformType; import ucar.nc2.dataset.NetcdfDataset; import ucar.nc2.Variable; import ucar.unidata.geoloc.Earth; /** * Create a Polar Stereographic Projection from the information in the Coordinate Transform Variable. * * @author caron */ public class PolarStereographic extends AbstractCoordTransBuilder { public String getTransformName() { return CF.POLAR_STEREOGRAPHIC; } public TransformType getTransformType() { return TransformType.Projection; } public CoordinateTransform makeCoordinateTransform(NetcdfDataset ds, Variable ctv) { double lon0 = readAttributeDouble( ctv, CF.STRAIGHT_VERTICAL_LONGITUDE_FROM_POLE, Double.NaN); if (Double.isNaN(lon0)) lon0 = readAttributeDouble( ctv, CF.LONGITUDE_OF_PROJECTION_ORIGIN, Double.NaN); if (Double.isNaN(lon0)) throw new IllegalArgumentException("No longitude parameter"); double lat0 = readAttributeDouble( ctv, CF.LATITUDE_OF_PROJECTION_ORIGIN, 90.0); double latD = 60.0; double scale = readAttributeDouble( ctv, CF.SCALE_FACTOR_AT_PROJECTION_ORIGIN, Double.NaN); if (Double.isNaN(scale)) { double stdpar = readAttributeDouble( ctv, CF.STANDARD_PARALLEL, Double.NaN); if (!Double.isNaN(stdpar)) { // caclulate scale snyder (21-7) // k = 2 * k0/(1 +/- sin stdpar) // then to make scale = 1 at stdpar, k0 = (1 +/- sin(stdpar))/2 // double sin = Math.sin( Math.toRadians( stdpar)); // scale = (lat0 > 0) ? (1.0 + sin)/2 : (1.0 - sin)/2; double sin = Math.abs(Math.sin( Math.toRadians( Math.abs(stdpar)))); scale = (1.0 + sin)/2; latD = stdpar; } else { scale = 0.9330127018922193; } } else { // given the scale, calculate stdpar // k0 = (1 +/- sin(stdpar))/2 // asin(2 * k0 - 1) = stdpar) double temp = 2 * scale -1; latD = Math.toDegrees( Math.asin(temp)); } double false_easting = readAttributeDouble(ctv, CF.FALSE_EASTING, 0.0); double false_northing = readAttributeDouble(ctv, CF.FALSE_NORTHING, 0.0); if ((false_easting != 0.0) || (false_northing != 0.0)) { double scalef = getFalseEastingScaleFactor(ds, ctv); false_easting *= scalef; false_northing *= scalef; } double earth_radius = getEarthRadiusInKm(ctv); double semi_major_axis = readAttributeDouble(ctv, CF.SEMI_MAJOR_AXIS, Double.NaN); // meters double semi_minor_axis = readAttributeDouble(ctv, CF.SEMI_MINOR_AXIS, Double.NaN); double inverse_flattening = readAttributeDouble(ctv, CF.INVERSE_FLATTENING, 0.0); ucar.unidata.geoloc.ProjectionImpl proj; // check for ellipsoidal earth if (!Double.isNaN(semi_major_axis) && (!Double.isNaN(semi_minor_axis) || inverse_flattening != 0.0)) { Earth earth = new Earth(semi_major_axis, semi_minor_axis, inverse_flattening); proj = new ucar.unidata.geoloc.projection.proj4.StereographicAzimuthalProjection(lat0, lon0, scale, latD, false_easting, false_northing, earth); } else { proj = new ucar.unidata.geoloc.projection.Stereographic( lat0, lon0, scale, false_easting, false_northing, earth_radius); } return new ProjectionCT(ctv.getShortName(), "FGDC", proj); } public static void main(String arg[]) { double stdpar = 70; double sin = Math.abs(Math.sin( Math.toRadians( stdpar))); double scale = (1.0 + sin)/2; System.out.printf("stdpar = %f has scale = %f %n",stdpar, scale ); } }