/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.util.eval;
import org.junit.Assert;
import org.junit.Test;
import opennlp.tools.util.Span;
/**
* Tests for the {@link FMeasure} class.
*/
public class FMeasureTest {
private static final double DELTA = 1.0E-9d;
private Span[] gold = {
new Span(8, 9),
new Span(9, 10),
new Span(10, 12),
new Span(13, 14),
new Span(14, 15),
new Span(15, 16)
};
private Span[] predicted = {
new Span(14, 15),
new Span(15, 16),
new Span(100, 120),
new Span(210, 220),
new Span(220, 230)
};
private Span[] predictedCompletelyDistinct = {
new Span(100, 120),
new Span(210, 220),
new Span(211, 220),
new Span(212, 220),
new Span(220, 230)
};
private Span[] goldToMerge = {
new Span(8, 9),
new Span(9, 10),
new Span(11, 11),
new Span(13, 14),
new Span(14, 15),
new Span(15, 16),
new Span(18, 19),
};
private Span[] predictedToMerge = {
new Span(8, 9),
new Span(14, 15),
new Span(15, 16),
new Span(100, 120),
new Span(210, 220),
new Span(220, 230)
};
/**
* Test for the {@link EvaluatorUtil#countTruePositives(Span[], Span[])} method.
*/
@Test
public void testCountTruePositives() {
Assert.assertEquals(0, FMeasure.countTruePositives(new Object[] {}, new Object[] {}));
Assert.assertEquals(gold.length, FMeasure.countTruePositives(gold, gold));
Assert.assertEquals(0, FMeasure.countTruePositives(gold, predictedCompletelyDistinct));
Assert.assertEquals(2, FMeasure.countTruePositives(gold, predicted));
}
/**
* Test for the {@link EvaluatorUtil#precision(Span[], Span[])} method.
*/
@Test
public void testPrecision() {
Assert.assertEquals(1.0d, FMeasure.precision(gold, gold), DELTA);
Assert.assertEquals(0, FMeasure.precision(gold, predictedCompletelyDistinct), DELTA);
Assert.assertEquals(Double.NaN, FMeasure.precision(gold, new Object[] {}), DELTA);
Assert.assertEquals(0, FMeasure.precision(new Object[] {}, gold), DELTA);
Assert.assertEquals(2d / predicted.length, FMeasure.precision(gold, predicted), DELTA);
}
/**
* Test for the {@link EvaluatorUtil#recall(Span[], Span[])} method.
*/
@Test
public void testRecall() {
Assert.assertEquals(1.0d, FMeasure.recall(gold, gold), DELTA);
Assert.assertEquals(0, FMeasure.recall(gold, predictedCompletelyDistinct), DELTA);
Assert.assertEquals(0, FMeasure.recall(gold, new Object[] {}), DELTA);
Assert.assertEquals(Double.NaN, FMeasure.recall(new Object[] {}, gold), DELTA);
Assert.assertEquals(2d / gold.length, FMeasure.recall(gold, predicted), DELTA);
}
@Test
public void testEmpty() {
FMeasure fm = new FMeasure();
Assert.assertEquals(-1, fm.getFMeasure(), DELTA);
Assert.assertEquals(0, fm.getRecallScore(), DELTA);
Assert.assertEquals(0, fm.getPrecisionScore(), DELTA);
}
@Test
public void testPerfect() {
FMeasure fm = new FMeasure();
fm.updateScores(gold, gold);
Assert.assertEquals(1, fm.getFMeasure(), DELTA);
Assert.assertEquals(1, fm.getRecallScore(), DELTA);
Assert.assertEquals(1, fm.getPrecisionScore(), DELTA);
}
@Test
public void testMerge() {
FMeasure fm = new FMeasure();
fm.updateScores(gold, predicted);
fm.updateScores(goldToMerge, predictedToMerge);
FMeasure fmMerge = new FMeasure();
fmMerge.updateScores(gold, predicted);
FMeasure toMerge = new FMeasure();
toMerge.updateScores(goldToMerge, predictedToMerge);
fmMerge.mergeInto(toMerge);
double selected1 = predicted.length;
double target1 = gold.length;
double tp1 = FMeasure.countTruePositives(gold, predicted);
double selected2 = predictedToMerge.length;
double target2 = goldToMerge.length;
double tp2 = FMeasure.countTruePositives(goldToMerge, predictedToMerge);
Assert.assertEquals((tp1 + tp2) / (target1 + target2), fm.getRecallScore(), DELTA);
Assert.assertEquals((tp1 + tp2) / (selected1 + selected2), fm.getPrecisionScore(), DELTA);
Assert.assertEquals(fm.getRecallScore(), fmMerge.getRecallScore(), DELTA);
Assert.assertEquals(fm.getPrecisionScore(), fmMerge.getPrecisionScore(), DELTA);
}
}