/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.util.eval; import org.junit.Assert; import org.junit.Test; import opennlp.tools.util.Span; /** * Tests for the {@link FMeasure} class. */ public class FMeasureTest { private static final double DELTA = 1.0E-9d; private Span[] gold = { new Span(8, 9), new Span(9, 10), new Span(10, 12), new Span(13, 14), new Span(14, 15), new Span(15, 16) }; private Span[] predicted = { new Span(14, 15), new Span(15, 16), new Span(100, 120), new Span(210, 220), new Span(220, 230) }; private Span[] predictedCompletelyDistinct = { new Span(100, 120), new Span(210, 220), new Span(211, 220), new Span(212, 220), new Span(220, 230) }; private Span[] goldToMerge = { new Span(8, 9), new Span(9, 10), new Span(11, 11), new Span(13, 14), new Span(14, 15), new Span(15, 16), new Span(18, 19), }; private Span[] predictedToMerge = { new Span(8, 9), new Span(14, 15), new Span(15, 16), new Span(100, 120), new Span(210, 220), new Span(220, 230) }; /** * Test for the {@link EvaluatorUtil#countTruePositives(Span[], Span[])} method. */ @Test public void testCountTruePositives() { Assert.assertEquals(0, FMeasure.countTruePositives(new Object[] {}, new Object[] {})); Assert.assertEquals(gold.length, FMeasure.countTruePositives(gold, gold)); Assert.assertEquals(0, FMeasure.countTruePositives(gold, predictedCompletelyDistinct)); Assert.assertEquals(2, FMeasure.countTruePositives(gold, predicted)); } /** * Test for the {@link EvaluatorUtil#precision(Span[], Span[])} method. */ @Test public void testPrecision() { Assert.assertEquals(1.0d, FMeasure.precision(gold, gold), DELTA); Assert.assertEquals(0, FMeasure.precision(gold, predictedCompletelyDistinct), DELTA); Assert.assertEquals(Double.NaN, FMeasure.precision(gold, new Object[] {}), DELTA); Assert.assertEquals(0, FMeasure.precision(new Object[] {}, gold), DELTA); Assert.assertEquals(2d / predicted.length, FMeasure.precision(gold, predicted), DELTA); } /** * Test for the {@link EvaluatorUtil#recall(Span[], Span[])} method. */ @Test public void testRecall() { Assert.assertEquals(1.0d, FMeasure.recall(gold, gold), DELTA); Assert.assertEquals(0, FMeasure.recall(gold, predictedCompletelyDistinct), DELTA); Assert.assertEquals(0, FMeasure.recall(gold, new Object[] {}), DELTA); Assert.assertEquals(Double.NaN, FMeasure.recall(new Object[] {}, gold), DELTA); Assert.assertEquals(2d / gold.length, FMeasure.recall(gold, predicted), DELTA); } @Test public void testEmpty() { FMeasure fm = new FMeasure(); Assert.assertEquals(-1, fm.getFMeasure(), DELTA); Assert.assertEquals(0, fm.getRecallScore(), DELTA); Assert.assertEquals(0, fm.getPrecisionScore(), DELTA); } @Test public void testPerfect() { FMeasure fm = new FMeasure(); fm.updateScores(gold, gold); Assert.assertEquals(1, fm.getFMeasure(), DELTA); Assert.assertEquals(1, fm.getRecallScore(), DELTA); Assert.assertEquals(1, fm.getPrecisionScore(), DELTA); } @Test public void testMerge() { FMeasure fm = new FMeasure(); fm.updateScores(gold, predicted); fm.updateScores(goldToMerge, predictedToMerge); FMeasure fmMerge = new FMeasure(); fmMerge.updateScores(gold, predicted); FMeasure toMerge = new FMeasure(); toMerge.updateScores(goldToMerge, predictedToMerge); fmMerge.mergeInto(toMerge); double selected1 = predicted.length; double target1 = gold.length; double tp1 = FMeasure.countTruePositives(gold, predicted); double selected2 = predictedToMerge.length; double target2 = goldToMerge.length; double tp2 = FMeasure.countTruePositives(goldToMerge, predictedToMerge); Assert.assertEquals((tp1 + tp2) / (target1 + target2), fm.getRecallScore(), DELTA); Assert.assertEquals((tp1 + tp2) / (selected1 + selected2), fm.getPrecisionScore(), DELTA); Assert.assertEquals(fm.getRecallScore(), fmMerge.getRecallScore(), DELTA); Assert.assertEquals(fm.getPrecisionScore(), fmMerge.getPrecisionScore(), DELTA); } }