/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.ml.model; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import opennlp.tools.util.InsufficientTrainingDataException; /** * An indexer for maxent model data which handles cutoffs for uncommon * contextual predicates and provides a unique integer index for each of the * predicates and maintains event values. */ public class OnePassRealValueDataIndexer extends OnePassDataIndexer { float[][] values; public OnePassRealValueDataIndexer() { } public float[][] getValues() { return values; } protected int sortAndMerge(List<ComparableEvent> eventsToCompare,boolean sort) throws InsufficientTrainingDataException { int numUniqueEvents = super.sortAndMerge(eventsToCompare,sort); values = new float[numUniqueEvents][]; int numEvents = eventsToCompare.size(); for (int i = 0, j = 0; i < numEvents; i++) { ComparableEvent evt = eventsToCompare.get(i); if (null == evt) { continue; // this was a dupe, skip over it. } values[j++] = evt.values; } return numUniqueEvents; } @Override protected List<ComparableEvent> index(List<Event> events, Map<String,Integer> predicateIndex) { Map<String,Integer> omap = new HashMap<>(); int numEvents = events.size(); int outcomeCount = 0; List<ComparableEvent> eventsToCompare = new ArrayList<>(numEvents); List<Integer> indexedContext = new ArrayList<>(); for (Event ev:events) { String[] econtext = ev.getContext(); ComparableEvent ce; int ocID; String oc = ev.getOutcome(); if (omap.containsKey(oc)) { ocID = omap.get(oc); } else { ocID = outcomeCount++; omap.put(oc, ocID); } for (String pred : econtext) { if (predicateIndex.containsKey(pred)) { indexedContext.add(predicateIndex.get(pred)); } } //drop events with no active features if (indexedContext.size() > 0) { int[] cons = new int[indexedContext.size()]; for (int ci = 0; ci < cons.length; ci++) { cons[ci] = indexedContext.get(ci); } ce = new ComparableEvent(ocID, cons, ev.getValues()); eventsToCompare.add(ce); } else { System.err.println("Dropped event " + ev.getOutcome() + ":" + Arrays.asList(ev.getContext())); } indexedContext.clear(); } outcomeLabels = toIndexedStringArray(omap); predLabels = toIndexedStringArray(predicateIndex); return eventsToCompare; } }