/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.chunker;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import opennlp.tools.util.Sequence;
import opennlp.tools.util.Span;
/**
* This dummy chunker implementation reads a file formatted as described at
* <a hraf="http://www.cnts.ua.ac.be/conll2000/chunking/output.html/">] to
* simulate a Chunker. The file has samples of sentences, with target and
* predicted values.
*/
public class DummyChunker implements Chunker {
private DummyChunkSampleStream mSampleStream;
public DummyChunker(DummyChunkSampleStream aSampleStream) {
mSampleStream = aSampleStream;
}
public List<String> chunk(List<String> toks, List<String> tags) {
return Arrays.asList(chunk(toks.toArray(new String[toks.size()]),
tags.toArray(new String[tags.size()])));
}
public String[] chunk(String[] toks, String[] tags) {
try {
ChunkSample predsSample = mSampleStream.read();
// checks if the streams are sync
for (int i = 0; i < toks.length; i++) {
if (!toks[i].equals(predsSample.getSentence()[i])
|| !tags[i].equals(predsSample.getTags()[i])) {
throw new RuntimeException("The streams are not sync!"
+ "\n expected sentence: " + Arrays.toString(toks)
+ "\n expected tags: " + Arrays.toString(tags)
+ "\n predicted sentence: "
+ Arrays.toString(predsSample.getSentence())
+ "\n predicted tags: "
+ Arrays.toString(predsSample.getTags()));
}
}
return predsSample.getPreds();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public Sequence[] topKSequences(List<String> sentence, List<String> tags) {
return null;
}
public Sequence[] topKSequences(String[] sentence, String[] tags,
double minSequenceScore) {
return null;
}
public Span[] chunkAsSpans(String[] toks, String[] tags) {
return null;
}
public Sequence[] topKSequences(String[] sentence, String[] tags) {
return null;
}
}