/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import java.io.IOException; import java.util.Arrays; import java.util.List; import opennlp.tools.util.Sequence; import opennlp.tools.util.Span; /** * This dummy chunker implementation reads a file formatted as described at * <a hraf="http://www.cnts.ua.ac.be/conll2000/chunking/output.html/">] to * simulate a Chunker. The file has samples of sentences, with target and * predicted values. */ public class DummyChunker implements Chunker { private DummyChunkSampleStream mSampleStream; public DummyChunker(DummyChunkSampleStream aSampleStream) { mSampleStream = aSampleStream; } public List<String> chunk(List<String> toks, List<String> tags) { return Arrays.asList(chunk(toks.toArray(new String[toks.size()]), tags.toArray(new String[tags.size()]))); } public String[] chunk(String[] toks, String[] tags) { try { ChunkSample predsSample = mSampleStream.read(); // checks if the streams are sync for (int i = 0; i < toks.length; i++) { if (!toks[i].equals(predsSample.getSentence()[i]) || !tags[i].equals(predsSample.getTags()[i])) { throw new RuntimeException("The streams are not sync!" + "\n expected sentence: " + Arrays.toString(toks) + "\n expected tags: " + Arrays.toString(tags) + "\n predicted sentence: " + Arrays.toString(predsSample.getSentence()) + "\n predicted tags: " + Arrays.toString(predsSample.getTags())); } } return predsSample.getPreds(); } catch (IOException e) { throw new RuntimeException(e); } } public Sequence[] topKSequences(List<String> sentence, List<String> tags) { return null; } public Sequence[] topKSequences(String[] sentence, String[] tags, double minSequenceScore) { return null; } public Span[] chunkAsSpans(String[] toks, String[] tags) { return null; } public Sequence[] topKSequences(String[] sentence, String[] tags) { return null; } }