/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.ml.perceptron; import java.util.Map; import opennlp.tools.ml.model.AbstractModel; import opennlp.tools.ml.model.Context; import opennlp.tools.ml.model.EvalParameters; public class PerceptronModel extends AbstractModel { /** * @deprecated this will be removed in 1.8.1, pmap should be private */ @Deprecated public PerceptronModel(Context[] params, String[] predLabels, Map<String, Integer> pmap, String[] outcomeNames) { super(params,predLabels,pmap,outcomeNames); modelType = ModelType.Perceptron; } public PerceptronModel(Context[] params, String[] predLabels, String[] outcomeNames) { super(params,predLabels,outcomeNames); modelType = ModelType.Perceptron; } public double[] eval(String[] context) { return eval(context,new double[evalParams.getNumOutcomes()]); } public double[] eval(String[] context, float[] values) { return eval(context,values,new double[evalParams.getNumOutcomes()]); } public double[] eval(String[] context, double[] probs) { return eval(context,null,probs); } public double[] eval(String[] context, float[] values,double[] outsums) { int[] scontexts = new int[context.length]; java.util.Arrays.fill(outsums, 0); for (int i = 0; i < context.length; i++) { Integer ci = pmap.get(context[i]); scontexts[i] = ci == null ? -1 : ci; } return eval(scontexts,values,outsums,evalParams,true); } public static double[] eval(int[] context, double[] prior, EvalParameters model) { return eval(context,null,prior,model,true); } @Deprecated // visibility will be reduced in 1.8.1 public static double[] eval(int[] context, float[] values, double[] prior, EvalParameters model, boolean normalize) { Context[] params = model.getParams(); double[] activeParameters; int[] activeOutcomes; double value = 1; for (int ci = 0; ci < context.length; ci++) { if (context[ci] >= 0) { Context predParams = params[context[ci]]; activeOutcomes = predParams.getOutcomes(); activeParameters = predParams.getParameters(); if (values != null) { value = values[ci]; } for (int ai = 0; ai < activeOutcomes.length; ai++) { int oid = activeOutcomes[ai]; prior[oid] += activeParameters[ai] * value; } } } if (normalize) { int numOutcomes = model.getNumOutcomes(); double maxPrior = 1; for (int oid = 0; oid < numOutcomes; oid++) { if (maxPrior < Math.abs(prior[oid])) maxPrior = Math.abs(prior[oid]); } double normal = 0.0; for (int oid = 0; oid < numOutcomes; oid++) { prior[oid] = Math.exp(prior[oid] / maxPrior); normal += prior[oid]; } for (int oid = 0; oid < numOutcomes; oid++) prior[oid] /= normal; } return prior; } }