/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.ml.perceptron; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.DataInputStream; import java.io.DataOutputStream; import java.io.IOException; import java.util.HashMap; import java.util.Map; import org.junit.Assert; import org.junit.Test; import opennlp.tools.ml.AbstractTrainer; import opennlp.tools.ml.EventTrainer; import opennlp.tools.ml.PrepAttachDataUtil; import opennlp.tools.ml.TrainerFactory; import opennlp.tools.ml.model.AbstractDataIndexer; import opennlp.tools.ml.model.AbstractModel; import opennlp.tools.ml.model.MaxentModel; import opennlp.tools.ml.model.TwoPassDataIndexer; import opennlp.tools.util.TrainingParameters; /** * Test for perceptron training and use with the ppa data. */ public class PerceptronPrepAttachTest { @Test public void testPerceptronOnPrepAttachData() throws IOException { TwoPassDataIndexer indexer = new TwoPassDataIndexer(); TrainingParameters indexingParameters = new TrainingParameters(); indexingParameters.put(AbstractTrainer.CUTOFF_PARAM, 1); indexingParameters.put(AbstractDataIndexer.SORT_PARAM, false); indexer.init(indexingParameters, new HashMap<>()); indexer.index(PrepAttachDataUtil.createTrainingStream()); MaxentModel model = new PerceptronTrainer().trainModel(400, indexer, 1); PrepAttachDataUtil.testModel(model, 0.7650408516959644); } @Test public void testPerceptronOnPrepAttachDataWithSkippedAveraging() throws IOException { TrainingParameters trainParams = new TrainingParameters(); trainParams.put(AbstractTrainer.ALGORITHM_PARAM, PerceptronTrainer.PERCEPTRON_VALUE); trainParams.put(AbstractTrainer.CUTOFF_PARAM, 1); trainParams.put("UseSkippedAveraging", true); EventTrainer trainer = TrainerFactory.getEventTrainer(trainParams, null); MaxentModel model = trainer.train(PrepAttachDataUtil.createTrainingStream()); PrepAttachDataUtil.testModel(model, 0.773706362961129); } @Test public void testPerceptronOnPrepAttachDataWithTolerance() throws IOException { TrainingParameters trainParams = new TrainingParameters(); trainParams.put(AbstractTrainer.ALGORITHM_PARAM, PerceptronTrainer.PERCEPTRON_VALUE); trainParams.put(AbstractTrainer.CUTOFF_PARAM, 1); trainParams.put(AbstractTrainer.ITERATIONS_PARAM, 500); trainParams.put("Tolerance", 0.0001d); EventTrainer trainer = TrainerFactory.getEventTrainer(trainParams, null); MaxentModel model = trainer.train(PrepAttachDataUtil.createTrainingStream()); PrepAttachDataUtil.testModel(model, 0.7677642980935875); } @Test public void testPerceptronOnPrepAttachDataWithStepSizeDecrease() throws IOException { TrainingParameters trainParams = new TrainingParameters(); trainParams.put(AbstractTrainer.ALGORITHM_PARAM, PerceptronTrainer.PERCEPTRON_VALUE); trainParams.put(AbstractTrainer.CUTOFF_PARAM, 1); trainParams.put(AbstractTrainer.ITERATIONS_PARAM, 500); trainParams.put("StepSizeDecrease", 0.06d); EventTrainer trainer = TrainerFactory.getEventTrainer(trainParams, null); MaxentModel model = trainer.train(PrepAttachDataUtil.createTrainingStream()); PrepAttachDataUtil.testModel(model, 0.7791532557563754); } @Test public void testModelSerialization() throws IOException { TrainingParameters trainParams = new TrainingParameters(); trainParams.put(AbstractTrainer.ALGORITHM_PARAM, PerceptronTrainer.PERCEPTRON_VALUE); trainParams.put(AbstractTrainer.CUTOFF_PARAM, 1); trainParams.put("UseSkippedAveraging", true); EventTrainer trainer = TrainerFactory.getEventTrainer(trainParams, null); AbstractModel model = (AbstractModel) trainer.train(PrepAttachDataUtil.createTrainingStream()); PrepAttachDataUtil.testModel(model, 0.773706362961129); // serialize and load model, then check if it still works as expected ByteArrayOutputStream modelBytes = new ByteArrayOutputStream(); BinaryPerceptronModelWriter writer = new BinaryPerceptronModelWriter(model, new DataOutputStream(modelBytes)); writer.persist(); writer.close(); MaxentModel restoredModel = new BinaryPerceptronModelReader( new DataInputStream(new ByteArrayInputStream(modelBytes.toByteArray()))).getModel(); PrepAttachDataUtil.testModel(restoredModel, 0.773706362961129); } @Test public void testModelEquals() throws IOException { TrainingParameters trainParams = new TrainingParameters(); trainParams.put(AbstractTrainer.ALGORITHM_PARAM, PerceptronTrainer.PERCEPTRON_VALUE); trainParams.put(AbstractTrainer.CUTOFF_PARAM, 1); trainParams.put("UseSkippedAveraging", true); EventTrainer trainer = TrainerFactory.getEventTrainer(trainParams, null); AbstractModel modelA = (AbstractModel) trainer.train(PrepAttachDataUtil.createTrainingStream()); AbstractModel modelB = (AbstractModel) trainer.train(PrepAttachDataUtil.createTrainingStream()); Assert.assertEquals(modelA, modelB); Assert.assertEquals(modelA.hashCode(), modelB.hashCode()); } @Test public void verifyReportMap() throws IOException { TrainingParameters trainParams = new TrainingParameters(); trainParams.put(AbstractTrainer.ALGORITHM_PARAM, PerceptronTrainer.PERCEPTRON_VALUE); trainParams.put(AbstractTrainer.CUTOFF_PARAM, 1); // Since we are verifying the report map, we don't need to have more than 1 iteration trainParams.put(AbstractTrainer.ITERATIONS_PARAM, 1); trainParams.put("UseSkippedAveraging", true); Map<String,String> reportMap = new HashMap<>(); EventTrainer trainer = TrainerFactory.getEventTrainer(trainParams, reportMap); trainer.train(PrepAttachDataUtil.createTrainingStream()); Assert.assertTrue("Report Map does not contain the training event hash", reportMap.containsKey("Training-Eventhash")); } }