/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.doccat; import java.io.IOException; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.TrainingParameters; import opennlp.tools.util.eval.CrossValidationPartitioner; import opennlp.tools.util.eval.Mean; /** * Cross validator for document categorization */ public class DoccatCrossValidator { private final String languageCode; private final TrainingParameters params; private Mean documentAccuracy = new Mean(); private DoccatEvaluationMonitor[] listeners; private DoccatFactory factory; /** * Creates a {@link DoccatCrossValidator} with the given * {@link FeatureGenerator}s. */ public DoccatCrossValidator(String languageCode, TrainingParameters mlParams, DoccatFactory factory, DoccatEvaluationMonitor ... listeners) { this.languageCode = languageCode; this.params = mlParams; this.listeners = listeners; this.factory = factory; } /** * Starts the evaluation. * * @param samples * the data to train and test * @param nFolds * number of folds * * @throws IOException */ public void evaluate(ObjectStream<DocumentSample> samples, int nFolds) throws IOException { CrossValidationPartitioner<DocumentSample> partitioner = new CrossValidationPartitioner<>( samples, nFolds); while (partitioner.hasNext()) { CrossValidationPartitioner.TrainingSampleStream<DocumentSample> trainingSampleStream = partitioner .next(); DoccatModel model = DocumentCategorizerME.train(languageCode, trainingSampleStream, params, factory); DocumentCategorizerEvaluator evaluator = new DocumentCategorizerEvaluator( new DocumentCategorizerME(model), listeners); evaluator.evaluate(trainingSampleStream.getTestSampleStream()); documentAccuracy.add(evaluator.getAccuracy(), evaluator.getDocumentCount()); } } /** * Retrieves the accuracy for all iterations. * * @return the word accuracy */ public double getDocumentAccuracy() { return documentAccuracy.mean(); } /** * Retrieves the number of words which where validated over all iterations. * The result is the amount of folds multiplied by the total number of words. * * @return the word count */ public long getDocumentCount() { return documentAccuracy.count(); } }