/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.parser; import java.io.IOException; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.TrainingParameters; import opennlp.tools.util.eval.CrossValidationPartitioner; import opennlp.tools.util.eval.FMeasure; public class ParserCrossValidator { private final String languageCode; private final TrainingParameters params; private final HeadRules rules; private final FMeasure fmeasure = new FMeasure(); private ParserType parserType; private ParserEvaluationMonitor[] monitors; public ParserCrossValidator(String languageCode, TrainingParameters params, HeadRules rules, ParserType parserType, ParserEvaluationMonitor... monitors) { this.languageCode = languageCode; this.params = params; this.rules = rules; this.parserType = parserType; } public void evaluate(ObjectStream<Parse> samples, int nFolds) throws IOException { CrossValidationPartitioner<Parse> partitioner = new CrossValidationPartitioner<>(samples, nFolds); while (partitioner.hasNext()) { CrossValidationPartitioner.TrainingSampleStream<Parse> trainingSampleStream = partitioner.next(); ParserModel model; if (ParserType.CHUNKING.equals(parserType)) { model = opennlp.tools.parser.chunking.Parser.train(languageCode, samples, rules, params); } else if (ParserType.TREEINSERT.equals(parserType)) { model = opennlp.tools.parser.treeinsert.Parser.train(languageCode, samples, rules, params); } else { throw new IllegalStateException("Unexpected parser type: " + parserType); } ParserEvaluator evaluator = new ParserEvaluator(ParserFactory.create(model), monitors); evaluator.evaluate(trainingSampleStream.getTestSampleStream()); fmeasure.mergeInto(evaluator.getFMeasure()); } } public FMeasure getFMeasure() { return fmeasure; } }