/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.ml.maxent; import java.io.IOException; import java.util.HashMap; import org.junit.Assert; import org.junit.Before; import org.junit.Test; import opennlp.tools.ml.AbstractTrainer; import opennlp.tools.ml.model.DataIndexer; import opennlp.tools.ml.model.FileEventStream; import opennlp.tools.ml.model.OnePassRealValueDataIndexer; import opennlp.tools.ml.model.RealValueFileEventStream; import opennlp.tools.util.TrainingParameters; public class RealValueModelTest { private DataIndexer testDataIndexer; @Before public void initIndexer() { TrainingParameters trainingParameters = new TrainingParameters(); trainingParameters.put(AbstractTrainer.CUTOFF_PARAM, 1); testDataIndexer = new OnePassRealValueDataIndexer(); testDataIndexer.init(trainingParameters, new HashMap<>()); } @Test public void testRealValuedWeightsVsRepeatWeighting() throws IOException { GISModel realModel; GISTrainer gisTrainer = new GISTrainer(); try (RealValueFileEventStream rvfes1 = new RealValueFileEventStream( "src/test/resources/data/opennlp/maxent/real-valued-weights-training-data.txt")) { testDataIndexer.index(rvfes1); realModel = gisTrainer.trainModel(100, testDataIndexer); } GISModel repeatModel; try (FileEventStream rvfes2 = new FileEventStream( "src/test/resources/data/opennlp/maxent/repeat-weighting-training-data.txt")) { testDataIndexer.index(rvfes2); repeatModel = gisTrainer.trainModel(100,testDataIndexer); } String[] features2Classify = new String[] {"feature2","feature5"}; double[] realResults = realModel.eval(features2Classify); double[] repeatResults = repeatModel.eval(features2Classify); Assert.assertEquals(realResults.length, repeatResults.length); for (int i = 0; i < realResults.length; i++) { System.out.println(String.format("classifiy with realModel: %1$s = %2$f", realModel.getOutcome(i), realResults[i])); System.out.println(String.format("classifiy with repeatModel: %1$s = %2$f", repeatModel.getOutcome(i), repeatResults[i])); Assert.assertEquals(realResults[i], repeatResults[i], 0.01f); } features2Classify = new String[] {"feature1","feature2","feature3","feature4","feature5"}; realResults = realModel.eval(features2Classify, new float[] {5.5f, 6.1f, 9.1f, 4.0f, 1.8f}); repeatResults = repeatModel.eval(features2Classify, new float[] {5.5f, 6.1f, 9.1f, 4.0f, 1.8f}); System.out.println(); Assert.assertEquals(realResults.length, repeatResults.length); for (int i = 0; i < realResults.length; i++) { System.out.println(String.format("classifiy with realModel: %1$s = %2$f", realModel.getOutcome(i), realResults[i])); System.out.println(String.format("classifiy with repeatModel: %1$s = %2$f", repeatModel.getOutcome(i), repeatResults[i])); Assert.assertEquals(realResults[i], repeatResults[i], 0.01f); } } }