/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.tokenize; import java.io.IOException; import java.nio.charset.StandardCharsets; import org.junit.Assert; import org.junit.Test; import opennlp.tools.formats.ResourceAsStreamFactory; import opennlp.tools.util.InputStreamFactory; import opennlp.tools.util.InsufficientTrainingDataException; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.PlainTextByLineStream; import opennlp.tools.util.TrainingParameters; /** * Tests for the {@link TokenizerME} class. * * This test trains the tokenizer with a few sample tokens * and then predicts a token. This test checks if the * tokenizer code can be executed. * * @see TokenizerME */ public class TokenizerMETest { @Test public void testTokenizerSimpleModel() throws IOException { TokenizerModel model = TokenizerTestUtil.createSimpleMaxentTokenModel(); TokenizerME tokenizer = new TokenizerME(model); String[] tokens = tokenizer.tokenize("test,"); Assert.assertEquals(2, tokens.length); Assert.assertEquals("test", tokens[0]); Assert.assertEquals(",", tokens[1]); } @Test public void testTokenizer() throws IOException { TokenizerModel model = TokenizerTestUtil.createMaxentTokenModel(); TokenizerME tokenizer = new TokenizerME(model); String[] tokens = tokenizer.tokenize("Sounds like it's not properly thought through!"); Assert.assertEquals(9, tokens.length); Assert.assertEquals("Sounds", tokens[0]); Assert.assertEquals("like", tokens[1]); Assert.assertEquals("it", tokens[2]); Assert.assertEquals("'s", tokens[3]); Assert.assertEquals("not", tokens[4]); Assert.assertEquals("properly", tokens[5]); Assert.assertEquals("thought", tokens[6]); Assert.assertEquals("through", tokens[7]); Assert.assertEquals("!", tokens[8]); } @Test(expected = InsufficientTrainingDataException.class) public void testInsufficientData() throws IOException { InputStreamFactory trainDataIn = new ResourceAsStreamFactory( TokenizerModel.class, "/opennlp/tools/tokenize/token-insufficient.train"); ObjectStream<TokenSample> samples = new TokenSampleStream( new PlainTextByLineStream(trainDataIn, StandardCharsets.UTF_8)); TrainingParameters mlParams = new TrainingParameters(); mlParams.put(TrainingParameters.ITERATIONS_PARAM, 100); mlParams.put(TrainingParameters.CUTOFF_PARAM, 5); TokenizerME.train(samples, TokenizerFactory.create(null, "en", null, true, null), mlParams); } }