/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.tokenize;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import org.junit.Assert;
import org.junit.Test;
import opennlp.tools.formats.ResourceAsStreamFactory;
import opennlp.tools.util.InputStreamFactory;
import opennlp.tools.util.InsufficientTrainingDataException;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.PlainTextByLineStream;
import opennlp.tools.util.TrainingParameters;
/**
* Tests for the {@link TokenizerME} class.
*
* This test trains the tokenizer with a few sample tokens
* and then predicts a token. This test checks if the
* tokenizer code can be executed.
*
* @see TokenizerME
*/
public class TokenizerMETest {
@Test
public void testTokenizerSimpleModel() throws IOException {
TokenizerModel model = TokenizerTestUtil.createSimpleMaxentTokenModel();
TokenizerME tokenizer = new TokenizerME(model);
String[] tokens = tokenizer.tokenize("test,");
Assert.assertEquals(2, tokens.length);
Assert.assertEquals("test", tokens[0]);
Assert.assertEquals(",", tokens[1]);
}
@Test
public void testTokenizer() throws IOException {
TokenizerModel model = TokenizerTestUtil.createMaxentTokenModel();
TokenizerME tokenizer = new TokenizerME(model);
String[] tokens = tokenizer.tokenize("Sounds like it's not properly thought through!");
Assert.assertEquals(9, tokens.length);
Assert.assertEquals("Sounds", tokens[0]);
Assert.assertEquals("like", tokens[1]);
Assert.assertEquals("it", tokens[2]);
Assert.assertEquals("'s", tokens[3]);
Assert.assertEquals("not", tokens[4]);
Assert.assertEquals("properly", tokens[5]);
Assert.assertEquals("thought", tokens[6]);
Assert.assertEquals("through", tokens[7]);
Assert.assertEquals("!", tokens[8]);
}
@Test(expected = InsufficientTrainingDataException.class)
public void testInsufficientData() throws IOException {
InputStreamFactory trainDataIn = new ResourceAsStreamFactory(
TokenizerModel.class, "/opennlp/tools/tokenize/token-insufficient.train");
ObjectStream<TokenSample> samples = new TokenSampleStream(
new PlainTextByLineStream(trainDataIn, StandardCharsets.UTF_8));
TrainingParameters mlParams = new TrainingParameters();
mlParams.put(TrainingParameters.ITERATIONS_PARAM, 100);
mlParams.put(TrainingParameters.CUTOFF_PARAM, 5);
TokenizerME.train(samples, TokenizerFactory.create(null, "en", null, true, null), mlParams);
}
}