/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.tokenize; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import java.util.logging.Level; import java.util.logging.Logger; import java.util.regex.Pattern; import opennlp.tools.ml.model.Event; import opennlp.tools.tokenize.lang.Factory; import opennlp.tools.util.AbstractEventStream; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.Span; /** * This class reads the {@link TokenSample}s from the given {@link Iterator} * and converts the {@link TokenSample}s into {@link Event}s which * can be used by the maxent library for training. */ public class TokSpanEventStream extends AbstractEventStream<TokenSample> { private static Logger logger = Logger.getLogger(TokSpanEventStream.class.getName()); private TokenContextGenerator cg; private boolean skipAlphaNumerics; private final Pattern alphaNumeric; /** * Initializes the current instance. * * @param tokenSamples * @param skipAlphaNumerics * @param cg */ public TokSpanEventStream(ObjectStream<TokenSample> tokenSamples, boolean skipAlphaNumerics, Pattern alphaNumeric, TokenContextGenerator cg) { super(tokenSamples); this.alphaNumeric = alphaNumeric; this.skipAlphaNumerics = skipAlphaNumerics; this.cg = cg; } /** * Initializes the current instance. * * @param tokenSamples * @param skipAlphaNumerics * @param cg */ public TokSpanEventStream(ObjectStream<TokenSample> tokenSamples, boolean skipAlphaNumerics, TokenContextGenerator cg) { super(tokenSamples); Factory factory = new Factory(); this.alphaNumeric = factory.getAlphanumeric(null); this.skipAlphaNumerics = skipAlphaNumerics; this.cg = cg; } /** * Initializes the current instance. * * @param tokenSamples * @param skipAlphaNumerics */ public TokSpanEventStream(ObjectStream<TokenSample> tokenSamples, boolean skipAlphaNumerics) { this(tokenSamples, skipAlphaNumerics, new DefaultTokenContextGenerator()); } /** * Adds training events to the event stream for each of the specified tokens. * * @param tokenSample character offsets into the specified text. * @return The text of the tokens. */ @Override protected Iterator<Event> createEvents(TokenSample tokenSample) { List<Event> events = new ArrayList<>(50); Span[] tokens = tokenSample.getTokenSpans(); String text = tokenSample.getText(); if (tokens.length > 0) { int start = tokens[0].getStart(); int end = tokens[tokens.length - 1].getEnd(); String sent = text.substring(start, end); Span[] candTokens = WhitespaceTokenizer.INSTANCE.tokenizePos(sent); int firstTrainingToken = -1; int lastTrainingToken = -1; for (Span candToken : candTokens) { Span cSpan = candToken; String ctok = sent.substring(cSpan.getStart(), cSpan.getEnd()); //adjust cSpan to text offsets cSpan = new Span(cSpan.getStart() + start, cSpan.getEnd() + start); //should we skip this token if (ctok.length() > 1 && (!skipAlphaNumerics || !alphaNumeric.matcher(ctok).matches())) { //find offsets of annotated tokens inside of candidate tokens boolean foundTrainingTokens = false; for (int ti = lastTrainingToken + 1; ti < tokens.length; ti++) { if (cSpan.contains(tokens[ti])) { if (!foundTrainingTokens) { firstTrainingToken = ti; foundTrainingTokens = true; } lastTrainingToken = ti; } else if (cSpan.getEnd() < tokens[ti].getEnd()) { break; } else if (tokens[ti].getEnd() < cSpan.getStart()) { //keep looking } else { if (logger.isLoggable(Level.WARNING)) { logger.warning("Bad training token: " + tokens[ti] + " cand: " + cSpan + " token=" + text.substring(tokens[ti].getStart(), tokens[ti].getEnd())); } } } // create training data if (foundTrainingTokens) { for (int ti = firstTrainingToken; ti <= lastTrainingToken; ti++) { Span tSpan = tokens[ti]; int cStart = cSpan.getStart(); for (int i = tSpan.getStart() + 1; i < tSpan.getEnd(); i++) { String[] context = cg.getContext(ctok, i - cStart); events.add(new Event(TokenizerME.NO_SPLIT, context)); } if (tSpan.getEnd() != cSpan.getEnd()) { String[] context = cg.getContext(ctok, tSpan.getEnd() - cStart); events.add(new Event(TokenizerME.SPLIT, context)); } } } } } } return events.iterator(); } }