/* * This file is part of JGrasstools (http://www.jgrasstools.org) * (C) HydroloGIS - www.hydrologis.com * * JGrasstools is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package org.jgrasstools.gears.io.las.index.strtree; import com.vividsolutions.jts.geom.Envelope; import com.vividsolutions.jts.index.ItemVisitor; import com.vividsolutions.jts.index.SpatialIndex; import com.vividsolutions.jts.index.strtree.*; import com.vividsolutions.jts.util.Assert; import com.vividsolutions.jts.util.PriorityQueue; import java.io.Serializable; import java.util.*; /** * A query-only R-tree created using the Sort-Tile-Recursive (STR) algorithm. * For two-dimensional spatial data. * <P> * The STR packed R-tree is simple to implement and maximizes space * utilization; that is, as many leaves as possible are filled to capacity. * Overlap between nodes is far less than in a basic R-tree. However, once the * tree has been built (explicitly or on the first call to #query), items may * not be added or removed. * <P> * Described in: P. Rigaux, Michel Scholl and Agnes Voisard. * <i>Spatial Databases With Application To GIS</i>. * Morgan Kaufmann, San Francisco, 2002. * * @version 1.7 */ public class STRtreeJGT extends AbstractSTRtree implements SpatialIndex, Serializable { private static final long serialVersionUID = 1621079558450867936L; private static final class STRtreeNode extends AbstractNode { private STRtreeNode( int level ) { super(level); } protected Object computeBounds() { Envelope bounds = null; for( Iterator i = getChildBoundables().iterator(); i.hasNext(); ) { Boundable childBoundable = (Boundable) i.next(); if (bounds == null) { bounds = new Envelope((Envelope) childBoundable.getBounds()); } else { bounds.expandToInclude((Envelope) childBoundable.getBounds()); } } return bounds; } } private static Comparator xComparator = new Comparator(){ public int compare( Object o1, Object o2 ) { return compareDoubles(centreX((Envelope) ((Boundable) o1).getBounds()), centreX((Envelope) ((Boundable) o2).getBounds())); } }; private static Comparator yComparator = new Comparator(){ public int compare( Object o1, Object o2 ) { return compareDoubles(centreY((Envelope) ((Boundable) o1).getBounds()), centreY((Envelope) ((Boundable) o2).getBounds())); } }; private static double centreX( Envelope e ) { return avg(e.getMinX(), e.getMaxX()); } private static double centreY( Envelope e ) { return avg(e.getMinY(), e.getMaxY()); } private static double avg( double a, double b ) { return (a + b) / 2d; } private static IntersectsOp intersectsOp = new IntersectsOp(){ public boolean intersects( Object aBounds, Object bBounds ) { return ((Envelope) aBounds).intersects((Envelope) bBounds); } }; /** * Creates the parent level for the given child level. First, orders the items * by the x-values of the midpoints, and groups them into vertical slices. * For each slice, orders the items by the y-values of the midpoints, and * group them into runs of size M (the node capacity). For each run, creates * a new (parent) node. */ protected List createParentBoundables( List childBoundables, int newLevel ) { Assert.isTrue(!childBoundables.isEmpty()); int minLeafCount = (int) Math.ceil((childBoundables.size() / (double) getNodeCapacity())); ArrayList sortedChildBoundables = new ArrayList(childBoundables); Collections.sort(sortedChildBoundables, xComparator); List[] verticalSlices = verticalSlices(sortedChildBoundables, (int) Math.ceil(Math.sqrt(minLeafCount))); return createParentBoundablesFromVerticalSlices(verticalSlices, newLevel); } private List createParentBoundablesFromVerticalSlices( List[] verticalSlices, int newLevel ) { Assert.isTrue(verticalSlices.length > 0); List parentBoundables = new ArrayList(); for( int i = 0; i < verticalSlices.length; i++ ) { parentBoundables.addAll(createParentBoundablesFromVerticalSlice(verticalSlices[i], newLevel)); } return parentBoundables; } protected List createParentBoundablesFromVerticalSlice( List childBoundables, int newLevel ) { return super.createParentBoundables(childBoundables, newLevel); } /** * @param childBoundables Must be sorted by the x-value of the envelope midpoints */ protected List[] verticalSlices( List childBoundables, int sliceCount ) { int sliceCapacity = (int) Math.ceil(childBoundables.size() / (double) sliceCount); List[] slices = new List[sliceCount]; Iterator i = childBoundables.iterator(); for( int j = 0; j < sliceCount; j++ ) { slices[j] = new ArrayList(); int boundablesAddedToSlice = 0; while( i.hasNext() && boundablesAddedToSlice < sliceCapacity ) { Boundable childBoundable = (Boundable) i.next(); slices[j].add(childBoundable); boundablesAddedToSlice++; } } return slices; } private static final int DEFAULT_NODE_CAPACITY = 10; /** * Constructs an STRtree with the default node capacity. */ public STRtreeJGT() { this(DEFAULT_NODE_CAPACITY); } /** * Constructs an STRtree with the given maximum number of child nodes that * a node may have. * <p> * The minimum recommended capacity setting is 4. * */ public STRtreeJGT( int nodeCapacity ) { super(nodeCapacity); } protected AbstractNode createNode( int level ) { return new STRtreeNode(level); } protected IntersectsOp getIntersectsOp() { return intersectsOp; } /** * Inserts an item having the given bounds into the tree. */ public void insert( Envelope itemEnv, Object item ) { if (itemEnv.isNull()) { return; } super.insert(itemEnv, item); } /** * Returns items whose bounds intersect the given envelope. */ public List query( Envelope searchEnv ) { // Yes this method does something. It specifies that the bounds is an // Envelope. super.query takes an Object, not an Envelope. [Jon Aquino 10/24/2003] return super.query(searchEnv); } /** * Returns items whose bounds intersect the given envelope. */ public void query( Envelope searchEnv, ItemVisitor visitor ) { // Yes this method does something. It specifies that the bounds is an // Envelope. super.query takes an Object, not an Envelope. [Jon Aquino 10/24/2003] super.query(searchEnv, visitor); } /** * Removes a single item from the tree. * * @param itemEnv the Envelope of the item to remove * @param item the item to remove * @return <code>true</code> if the item was found */ public boolean remove( Envelope itemEnv, Object item ) { return super.remove(itemEnv, item); } /** * Queries the tree and returns {@link com.vividsolutions.jts.index.strtree.ItemBoundable}s instead of only the values. * * <p>Also builds the tree, if necessary.</p> * * @param searchBounds the bounds to search for. * @return the list of {@link com.vividsolutions.jts.index.strtree.ItemBoundable}s. */ public List queryBoundables( Object searchBounds ) { build(); ArrayList matches = new ArrayList(); if (isEmpty()) { // Assert.isTrue(root.getBounds() == null); return matches; } if (getIntersectsOp().intersects(root.getBounds(), searchBounds)) { queryBoundables(searchBounds, root, matches); } return matches; } private void queryBoundables( Object searchBounds, AbstractNode node, List matches ) { List childBoundables = node.getChildBoundables(); for( int i = 0; i < childBoundables.size(); i++ ) { Boundable childBoundable = (Boundable) childBoundables.get(i); if (!getIntersectsOp().intersects(childBoundable.getBounds(), searchBounds)) { continue; } if (childBoundable instanceof AbstractNode) { queryBoundables(searchBounds, (AbstractNode) childBoundable, matches); } else if (childBoundable instanceof ItemBoundable) { matches.add(childBoundable); } else { Assert.shouldNeverReachHere(); } } } /** * Returns the number of items in the tree. * * @return the number of items in the tree */ public int size() { return super.size(); } /** * Returns the number of items in the tree. * * @return the number of items in the tree */ public int depth() { return super.depth(); } protected Comparator getComparator() { return yComparator; } /** * Finds the two nearest items in the tree, * using {@link com.vividsolutions.jts.index.strtree.ItemDistance} as the distance metric. * A Branch-and-Bound tree traversal algorithm is used * to provide an efficient search. * * @param itemDist a distance metric applicable to the items in this tree * @return the pair of the nearest items */ public Object[] nearestNeighbour( ItemDistance itemDist ) { BoundablePair bp = new BoundablePair(this.getRoot(), this.getRoot(), itemDist); return nearestNeighbour(bp); } /** * Finds the item in this tree which is nearest to the given {@link Object}, * using {@link com.vividsolutions.jts.index.strtree.ItemDistance} as the distance metric. * A Branch-and-Bound tree traversal algorithm is used * to provide an efficient search. * <p> * The query <tt>object</tt> does <b>not</b> have to be * contained in the tree, but it does * have to be compatible with the <tt>itemDist</tt> * distance metric. * * @param env the envelope of the query item * @param item the item to find the nearest neighbour of * @param itemDist a distance metric applicable to the items in this tree and the query item * @return the nearest item in this tree */ public Object nearestNeighbour( Envelope env, Object item, ItemDistance itemDist ) { Boundable bnd = new ItemBoundable(env, item); BoundablePair bp = new BoundablePair(this.getRoot(), bnd, itemDist); return nearestNeighbour(bp)[0]; } /** * Finds the two nearest items from this tree * and another tree, * using {@link com.vividsolutions.jts.index.strtree.ItemDistance} as the distance metric. * A Branch-and-Bound tree traversal algorithm is used * to provide an efficient search. * The result value is a pair of items, * the first from this tree and the second * from the argument tree. * * @param tree another tree * @param itemDist a distance metric applicable to the items in the trees * @return the pair of the nearest items, one from each tree */ public Object[] nearestNeighbour( STRtreeJGT tree, ItemDistance itemDist ) { BoundablePair bp = new BoundablePair(this.getRoot(), tree.getRoot(), itemDist); return nearestNeighbour(bp); } private Object[] nearestNeighbour( BoundablePair initBndPair ) { return nearestNeighbour(initBndPair, Double.POSITIVE_INFINITY); } private Object[] nearestNeighbour( BoundablePair initBndPair, double maxDistance ) { double distanceLowerBound = maxDistance; BoundablePair minPair = null; // initialize internal structures PriorityQueue priQ = new PriorityQueue(); // initialize queue priQ.add(initBndPair); while( !priQ.isEmpty() && distanceLowerBound > 0.0 ) { // pop head of queue and expand one side of pair BoundablePair bndPair = (BoundablePair) priQ.poll(); double currentDistance = bndPair.getDistance(); /** * If the distance for the first node in the queue * is >= the current minimum distance, all other nodes * in the queue must also have a greater distance. * So the current minDistance must be the true minimum, * and we are done. */ if (currentDistance >= distanceLowerBound) break; /** * If the pair members are leaves * then their distance is the exact lower bound. * Update the distanceLowerBound to reflect this * (which must be smaller, due to the test * immediately prior to this). */ if (bndPair.isLeaves()) { // assert: currentDistance < minimumDistanceFound distanceLowerBound = currentDistance; minPair = bndPair; } else { // testing - does allowing a tolerance improve speed? // Ans: by only about 10% - not enough to matter /* double maxDist = bndPair.getMaximumDistance(); if (maxDist * .99 < lastComputedDistance) return; //*/ /** * Otherwise, expand one side of the pair, * (the choice of which side to expand is heuristically determined) * and insert the new expanded pairs into the queue */ bndPair.expandToQueue(priQ, distanceLowerBound); } } // done - return items with min distance return new Object[]{((ItemBoundable) minPair.getBoundable(0)).getItem(), ((ItemBoundable) minPair.getBoundable(1)).getItem()}; } }