/* * BioJava development code * * This code may be freely distributed and modified under the * terms of the GNU Lesser General Public Licence. This should * be distributed with the code. If you do not have a copy, * see: * * http://www.gnu.org/copyleft/lesser.html * * Copyright for this code is held jointly by the individual * authors. These should be listed in @author doc comments. * * For more information on the BioJava project and its aims, * or to join the biojava-l mailing list, visit the home page * at: * * http://www.biojava.org/ * */ package org.biojava.nbio.structure.geometry; import javax.vecmath.Matrix3d; import javax.vecmath.Matrix4d; import javax.vecmath.Point3d; import javax.vecmath.Vector3d; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * Implementation of the Quaternion-Based Characteristic Polynomial algorithm * for RMSD and Superposition calculations. * <p> * Usage: * <p> * The input consists of 2 Point3d arrays of equal length. The input coordinates * are not changed. * <pre> * Point3d[] x = ... * Point3d[] y = ... * SuperPositionQCP qcp = new SuperPositionQCP(); * qcp.set(x, y); * </pre> * <p> * or with weighting factors [0 - 1]] * <pre> * double[] weights = ... * qcp.set(x, y, weights); * </pre> * <p> * For maximum efficiency, create a SuperPositionQCP object once and reuse it. * <p> * A. Calculate rmsd only * <pre> * double rmsd = qcp.getRmsd(); * </pre> * <p> * B. Calculate a 4x4 transformation (rotation and translation) matrix * <pre> * Matrix4d rottrans = qcp.getTransformationMatrix(); * </pre> * <p> * C. Get transformated points (y superposed onto the reference x) * <pre> * Point3d[] ySuperposed = qcp.getTransformedCoordinates(); * </pre> * <p> * Citations: * <p> * Liu P, Agrafiotis DK, & Theobald DL (2011) * Reply to comment on: "Fast determination of the optimal rotation matrix for macromolecular superpositions." * Journal of Computational Chemistry 32(1):185-186. [http://dx.doi.org/10.1002/jcc.21606] * <p> * Liu P, Agrafiotis DK, & Theobald DL (2010) * "Fast determination of the optimal rotation matrix for macromolecular superpositions." * Journal of Computational Chemistry 31(7):1561-1563. [http://dx.doi.org/10.1002/jcc.21439] * <p> * Douglas L Theobald (2005) * "Rapid calculation of RMSDs using a quaternion-based characteristic polynomial." * Acta Crystallogr A 61(4):478-480. [http://dx.doi.org/10.1107/S0108767305015266 ] * <p> * This is an adoption of the original C code QCProt 1.4 (2012, October 10) to Java. * The original C source code is available from http://theobald.brandeis.edu/qcp/ and was developed by * <p> * Douglas L. Theobald * Department of Biochemistry * MS 009 * Brandeis University * 415 South St * Waltham, MA 02453 * USA * <p> * dtheobald@brandeis.edu * <p> * Pu Liu * Johnson & Johnson Pharmaceutical Research and Development, L.L.C. * 665 Stockton Drive * Exton, PA 19341 * USA * <p> * pliu24@its.jnj.com * <p> * @author Douglas L. Theobald (original C code) * @author Pu Liu (original C code) * @author Peter Rose (adopted to Java) * @author Aleix Lafita (adopted to Java) */ public final class SuperPositionQCP extends SuperPositionAbstract { private static final Logger logger = LoggerFactory .getLogger(SuperPositionQCP.class); private double evec_prec = 1E-6; private double eval_prec = 1E-11; private Point3d[] x; private Point3d[] y; private double[] weight; private double wsum; private Point3d[] xref; private Point3d[] yref; private Point3d xtrans; private Point3d ytrans; private double e0; private Matrix3d rotmat = new Matrix3d(); private Matrix4d transformation = new Matrix4d(); private double rmsd = 0; private double Sxy, Sxz, Syx, Syz, Szx, Szy; private double SxxpSyy, Szz, mxEigenV, SyzmSzy, SxzmSzx, SxymSyx; private double SxxmSyy, SxypSyx, SxzpSzx; private double Syy, Sxx, SyzpSzy; private boolean rmsdCalculated = false; private boolean transformationCalculated = false; private boolean centered = false; /** * Default constructor for the quaternion based superposition algorithm. * * @param centered * true if the point arrays are centered at the origin (faster), * false otherwise */ public SuperPositionQCP(boolean centered) { super(centered); } /** * Constructor with option to set the precision values. * * @param centered * true if the point arrays are centered at the origin (faster), * false otherwise * @param evec_prec required eigenvector precision * @param eval_prec required eigenvalue precision */ public SuperPositionQCP(boolean centered, double evec_prec, double eval_prec) { super(centered); this.evec_prec = evec_prec; this.eval_prec = eval_prec; } /** * Sets the two input coordinate arrays. These input arrays must be of * equal length. Input coordinates are not modified. * @param x 3d points of reference coordinate set * @param y 3d points of coordinate set for superposition */ private void set(Point3d[] x, Point3d[] y) { this.x = x; this.y = y; rmsdCalculated = false; transformationCalculated = false; } /** * Sets the two input coordinate arrays and weight array. * All input arrays must be of equal length. * Input coordinates are not modified. * @param x 3d points of reference coordinate set * @param y 3d points of coordinate set for superposition * @param weight a weight in the inclusive range [0,1] for each point */ private void set(Point3d[] x, Point3d[] y, double[] weight) { this.x = x; this.y = y; this.weight = weight; rmsdCalculated = false; transformationCalculated = false; } /** * Return the RMSD of the superposition of input coordinate set y onto x. * Note, this is the fasted way to calculate an RMSD without actually * superposing the two sets. The calculation is performed "lazy", meaning * calculations are only performed if necessary. * @return root mean square deviation for superposition of y onto x */ private double getRmsd() { if (!rmsdCalculated) { calcRmsd(x, y); } return rmsd; } @Override public Matrix4d superpose(Point3d[] fixed, Point3d[] moved) { set(moved, fixed); getRotationMatrix(); if (!centered) { calcTransformation(); } else { transformation.set(rotmat); } return transformation; } /** * Weighted superposition. * * @param fixed * @param moved * @param weight array of weigths for each equivalent point position * @return */ public Matrix4d weightedSuperpose(Point3d[] fixed, Point3d[] moved, double[] weight) { set(moved, fixed, weight); getRotationMatrix(); if (!centered) { calcTransformation(); } else { transformation.set(rotmat); } return transformation; } private Matrix3d getRotationMatrix() { getRmsd(); if (!transformationCalculated) { calcRotationMatrix(); } return rotmat; } /** * Calculates the RMSD value for superposition of y onto x. * This requires the coordinates to be precentered. * @param x 3d points of reference coordinate set * @param y 3d points of coordinate set for superposition */ private void calcRmsd(Point3d[] x, Point3d[] y) { if (centered) { innerProduct(y, x); } else { // translate to origin xref = CalcPoint.clonePoint3dArray(x); xtrans = CalcPoint.centroid(xref); logger.debug("x centroid: " + xtrans); xtrans.negate(); CalcPoint.translate(new Vector3d(xtrans), xref); yref = CalcPoint.clonePoint3dArray(y); ytrans = CalcPoint.centroid(yref); logger.debug("y centroid: " + ytrans); ytrans.negate(); CalcPoint.translate(new Vector3d(ytrans), yref); innerProduct(yref, xref); } calcRmsd(wsum); } /** * Superposition coords2 onto coords1 -- in other words, coords2 is rotated, * coords1 is held fixed */ private void calcTransformation() { // transformation.set(rotmat,new Vector3d(0,0,0), 1); transformation.set(rotmat); // long t2 = System.nanoTime(); // System.out.println("create transformation: " + (t2-t1)); // System.out.println("m3d -> m4d"); // System.out.println(transformation); // combine with x -> origin translation Matrix4d trans = new Matrix4d(); trans.setIdentity(); trans.setTranslation(new Vector3d(xtrans)); transformation.mul(transformation, trans); // System.out.println("setting xtrans"); // System.out.println(transformation); // combine with origin -> y translation ytrans.negate(); Matrix4d transInverse = new Matrix4d(); transInverse.setIdentity(); transInverse.setTranslation(new Vector3d(ytrans)); transformation.mul(transInverse, transformation); // System.out.println("setting ytrans"); // System.out.println(transformation); } /** * Calculates the inner product between two coordinate sets x and y (optionally weighted, * if weights set through {@link #set(Point3d[], Point3d[], double[])}). It also * calculates an upper bound of the most positive root of the key matrix. * http://theobald.brandeis.edu/qcp/qcprot.c * * @param coords1 * @param coords2 * @return */ private void innerProduct(Point3d[] coords1, Point3d[] coords2) { double x1, x2, y1, y2, z1, z2; double g1 = 0.0, g2 = 0.0; Sxx = 0; Sxy = 0; Sxz = 0; Syx = 0; Syy = 0; Syz = 0; Szx = 0; Szy = 0; Szz = 0; if (weight != null) { wsum = 0; for (int i = 0; i < coords1.length; i++) { wsum += weight[i]; x1 = weight[i] * coords1[i].x; y1 = weight[i] * coords1[i].y; z1 = weight[i] * coords1[i].z; g1 += x1 * coords1[i].x + y1 * coords1[i].y + z1 * coords1[i].z; x2 = coords2[i].x; y2 = coords2[i].y; z2 = coords2[i].z; g2 += weight[i] * (x2 * x2 + y2 * y2 + z2 * z2); Sxx += (x1 * x2); Sxy += (x1 * y2); Sxz += (x1 * z2); Syx += (y1 * x2); Syy += (y1 * y2); Syz += (y1 * z2); Szx += (z1 * x2); Szy += (z1 * y2); Szz += (z1 * z2); } } else { for (int i = 0; i < coords1.length; i++) { g1 += coords1[i].x * coords1[i].x + coords1[i].y * coords1[i].y + coords1[i].z * coords1[i].z; g2 += coords2[i].x * coords2[i].x + coords2[i].y * coords2[i].y + coords2[i].z * coords2[i].z; Sxx += coords1[i].x * coords2[i].x; Sxy += coords1[i].x * coords2[i].y; Sxz += coords1[i].x * coords2[i].z; Syx += coords1[i].y * coords2[i].x; Syy += coords1[i].y * coords2[i].y; Syz += coords1[i].y * coords2[i].z; Szx += coords1[i].z * coords2[i].x; Szy += coords1[i].z * coords2[i].y; Szz += coords1[i].z * coords2[i].z; } wsum = coords1.length; } e0 = (g1 + g2) * 0.5; } private int calcRmsd(double len) { double Sxx2 = Sxx * Sxx; double Syy2 = Syy * Syy; double Szz2 = Szz * Szz; double Sxy2 = Sxy * Sxy; double Syz2 = Syz * Syz; double Sxz2 = Sxz * Sxz; double Syx2 = Syx * Syx; double Szy2 = Szy * Szy; double Szx2 = Szx * Szx; double SyzSzymSyySzz2 = 2.0 * (Syz * Szy - Syy * Szz); double Sxx2Syy2Szz2Syz2Szy2 = Syy2 + Szz2 - Sxx2 + Syz2 + Szy2; double c2 = -2.0 * (Sxx2 + Syy2 + Szz2 + Sxy2 + Syx2 + Sxz2 + Szx2 + Syz2 + Szy2); double c1 = 8.0 * (Sxx * Syz * Szy + Syy * Szx * Sxz + Szz * Sxy * Syx - Sxx * Syy * Szz - Syz * Szx * Sxy - Szy * Syx * Sxz); SxzpSzx = Sxz + Szx; SyzpSzy = Syz + Szy; SxypSyx = Sxy + Syx; SyzmSzy = Syz - Szy; SxzmSzx = Sxz - Szx; SxymSyx = Sxy - Syx; SxxpSyy = Sxx + Syy; SxxmSyy = Sxx - Syy; double Sxy2Sxz2Syx2Szx2 = Sxy2 + Sxz2 - Syx2 - Szx2; double c0 = Sxy2Sxz2Syx2Szx2 * Sxy2Sxz2Syx2Szx2 + (Sxx2Syy2Szz2Syz2Szy2 + SyzSzymSyySzz2) * (Sxx2Syy2Szz2Syz2Szy2 - SyzSzymSyySzz2) + (-(SxzpSzx) * (SyzmSzy) + (SxymSyx) * (SxxmSyy - Szz)) * (-(SxzmSzx) * (SyzpSzy) + (SxymSyx) * (SxxmSyy + Szz)) + (-(SxzpSzx) * (SyzpSzy) - (SxypSyx) * (SxxpSyy - Szz)) * (-(SxzmSzx) * (SyzmSzy) - (SxypSyx) * (SxxpSyy + Szz)) + (+(SxypSyx) * (SyzpSzy) + (SxzpSzx) * (SxxmSyy + Szz)) * (-(SxymSyx) * (SyzmSzy) + (SxzpSzx) * (SxxpSyy + Szz)) + (+(SxypSyx) * (SyzmSzy) + (SxzmSzx) * (SxxmSyy - Szz)) * (-(SxymSyx) * (SyzpSzy) + (SxzmSzx) * (SxxpSyy - Szz)); mxEigenV = e0; int i; for (i = 1; i < 51; ++i) { double oldg = mxEigenV; double x2 = mxEigenV * mxEigenV; double b = (x2 + c2) * mxEigenV; double a = b + c1; double delta = ((a * mxEigenV + c0) / (2.0 * x2 * mxEigenV + b + a)); mxEigenV -= delta; if (Math.abs(mxEigenV - oldg) < Math.abs(eval_prec*mxEigenV)) break; } if (i == 50) { logger.warn(String.format("More than %d iterations needed!", i)); } else { logger.info(String.format("%d iterations needed!", i)); } /* * the fabs() is to guard against extremely small, but *negative* * numbers due to floating point error */ rmsd = Math.sqrt(Math.abs(2.0 * (e0 - mxEigenV) / len)); return 1; } private int calcRotationMatrix() { double a11 = SxxpSyy + Szz - mxEigenV; double a12 = SyzmSzy; double a13 = -SxzmSzx; double a14 = SxymSyx; double a21 = SyzmSzy; double a22 = SxxmSyy - Szz - mxEigenV; double a23 = SxypSyx; double a24 = SxzpSzx; double a31 = a13; double a32 = a23; double a33 = Syy - Sxx - Szz - mxEigenV; double a34 = SyzpSzy; double a41 = a14; double a42 = a24; double a43 = a34; double a44 = Szz - SxxpSyy - mxEigenV; double a3344_4334 = a33 * a44 - a43 * a34; double a3244_4234 = a32 * a44 - a42 * a34; double a3243_4233 = a32 * a43 - a42 * a33; double a3143_4133 = a31 * a43 - a41 * a33; double a3144_4134 = a31 * a44 - a41 * a34; double a3142_4132 = a31 * a42 - a41 * a32; double q1 = a22 * a3344_4334 - a23 * a3244_4234 + a24 * a3243_4233; double q2 = -a21 * a3344_4334 + a23 * a3144_4134 - a24 * a3143_4133; double q3 = a21 * a3244_4234 - a22 * a3144_4134 + a24 * a3142_4132; double q4 = -a21 * a3243_4233 + a22 * a3143_4133 - a23 * a3142_4132; double qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4; /* * The following code tries to calculate another column in the adjoint * matrix when the norm of the current column is too small. Usually this * commented block will never be activated. To be absolutely safe this * should be uncommented, but it is most likely unnecessary. */ if (qsqr < evec_prec) { q1 = a12 * a3344_4334 - a13 * a3244_4234 + a14 * a3243_4233; q2 = -a11 * a3344_4334 + a13 * a3144_4134 - a14 * a3143_4133; q3 = a11 * a3244_4234 - a12 * a3144_4134 + a14 * a3142_4132; q4 = -a11 * a3243_4233 + a12 * a3143_4133 - a13 * a3142_4132; qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4; if (qsqr < evec_prec) { double a1324_1423 = a13 * a24 - a14 * a23, a1224_1422 = a12 * a24 - a14 * a22; double a1223_1322 = a12 * a23 - a13 * a22, a1124_1421 = a11 * a24 - a14 * a21; double a1123_1321 = a11 * a23 - a13 * a21, a1122_1221 = a11 * a22 - a12 * a21; q1 = a42 * a1324_1423 - a43 * a1224_1422 + a44 * a1223_1322; q2 = -a41 * a1324_1423 + a43 * a1124_1421 - a44 * a1123_1321; q3 = a41 * a1224_1422 - a42 * a1124_1421 + a44 * a1122_1221; q4 = -a41 * a1223_1322 + a42 * a1123_1321 - a43 * a1122_1221; qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4; if (qsqr < evec_prec) { q1 = a32 * a1324_1423 - a33 * a1224_1422 + a34 * a1223_1322; q2 = -a31 * a1324_1423 + a33 * a1124_1421 - a34 * a1123_1321; q3 = a31 * a1224_1422 - a32 * a1124_1421 + a34 * a1122_1221; q4 = -a31 * a1223_1322 + a32 * a1123_1321 - a33 * a1122_1221; qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4; if (qsqr < evec_prec) { /* * if qsqr is still too small, return the identity * matrix. */ rotmat.setIdentity(); return 0; } } } } double normq = Math.sqrt(qsqr); q1 /= normq; q2 /= normq; q3 /= normq; q4 /= normq; logger.debug("q: " + q1 + " " + q2 + " " + q3 + " " + q4); double a2 = q1 * q1; double x2 = q2 * q2; double y2 = q3 * q3; double z2 = q4 * q4; double xy = q2 * q3; double az = q1 * q4; double zx = q4 * q2; double ay = q1 * q3; double yz = q3 * q4; double ax = q1 * q2; rotmat.m00 = a2 + x2 - y2 - z2; rotmat.m01 = 2 * (xy + az); rotmat.m02 = 2 * (zx - ay); rotmat.m10 = 2 * (xy - az); rotmat.m11 = a2 - x2 + y2 - z2; rotmat.m12 = 2 * (yz + ax); rotmat.m20 = 2 * (zx + ay); rotmat.m21 = 2 * (yz - ax); rotmat.m22 = a2 - x2 - y2 + z2; return 1; } @Override public double getRmsd(Point3d[] fixed, Point3d[] moved) { set(moved, fixed); return getRmsd(); } /** * @param fixed * @param moved * @param weight array of weigths for each equivalent point position * @return weighted RMSD. */ public double getWeightedRmsd(Point3d[] fixed, Point3d[] moved, double[] weight) { set(moved, fixed, weight); return getRmsd(); } }