/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package java.math; import java.util.Arrays; /** * Provides primality probabilistic methods. */ class Primality { /** Just to denote that this class can't be instantiated. */ private Primality() {} /** All prime numbers with bit length lesser than 10 bits. */ private static final int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021 }; /** All {@code BigInteger} prime numbers with bit length lesser than 10 bits. */ private static final BigInteger BIprimes[] = new BigInteger[primes.length]; // /** // * It encodes how many iterations of Miller-Rabin test are need to get an // * error bound not greater than {@code 2<sup>(-100)</sup>}. For example: // * for a {@code 1000}-bit number we need {@code 4} iterations, since // * {@code BITS[3] < 1000 <= BITS[4]}. // */ // private static final int[] BITS = { 0, 0, 1854, 1233, 927, 747, 627, 543, // 480, 431, 393, 361, 335, 314, 295, 279, 265, 253, 242, 232, 223, // 216, 181, 169, 158, 150, 145, 140, 136, 132, 127, 123, 119, 114, // 110, 105, 101, 96, 92, 87, 83, 78, 73, 69, 64, 59, 54, 49, 44, 38, // 32, 26, 1 }; // // /** // * It encodes how many i-bit primes there are in the table for // * {@code i=2,...,10}. For example {@code offsetPrimes[6]} says that from // * index {@code 11} exists {@code 7} consecutive {@code 6}-bit prime // * numbers in the array. // */ // private static final int[][] offsetPrimes = { null, null, { 0, 2 }, // { 2, 2 }, { 4, 2 }, { 6, 5 }, { 11, 7 }, { 18, 13 }, { 31, 23 }, // { 54, 43 }, { 97, 75 } }; static {// To initialize the dual table of BigInteger primes for (int i = 0; i < primes.length; i++) { BIprimes[i] = BigInteger.valueOf(primes[i]); } } /** * It uses the sieve of Eratosthenes to discard several composite numbers in * some appropriate range (at the moment {@code [this, this + 1024]}). After * this process it applies the Miller-Rabin test to the numbers that were * not discarded in the sieve. * * @see BigInteger#nextProbablePrime() */ static BigInteger nextProbablePrime(BigInteger n) { // PRE: n >= 0 int i, j; // int certainty; int gapSize = 1024; // for searching of the next probable prime number int[] modules = new int[primes.length]; boolean isDivisible[] = new boolean[gapSize]; BigInt ni = n.getBigInt(); // If n < "last prime of table" searches next prime in the table if (ni.bitLength() <= 10) { int l = (int)ni.longInt(); if (l < primes[primes.length - 1]) { for (i = 0; l >= primes[i]; i++) {} return BIprimes[i]; } } BigInt startPoint = ni.copy(); BigInt probPrime = new BigInt(); // Fix startPoint to "next odd number": startPoint.addPositiveInt(BigInt.remainderByPositiveInt(ni, 2) + 1); // // To set the improved certainty of Miller-Rabin // j = startPoint.bitLength(); // for (certainty = 2; j < BITS[certainty]; certainty++) { // ; // } // To calculate modules: N mod p1, N mod p2, ... for first primes. for (i = 0; i < primes.length; i++) { modules[i] = BigInt.remainderByPositiveInt(startPoint, primes[i]) - gapSize; } while (true) { // At this point, all numbers in the gap are initialized as // probably primes Arrays.fill(isDivisible, false); // To discard multiples of first primes for (i = 0; i < primes.length; i++) { modules[i] = (modules[i] + gapSize) % primes[i]; j = (modules[i] == 0) ? 0 : (primes[i] - modules[i]); for (; j < gapSize; j += primes[i]) { isDivisible[j] = true; } } // To execute Miller-Rabin for non-divisible numbers by all first // primes for (j = 0; j < gapSize; j++) { if (!isDivisible[j]) { probPrime.putCopy(startPoint); probPrime.addPositiveInt(j); if (probPrime.isPrime(100)) { return new BigInteger(probPrime); } } } startPoint.addPositiveInt(gapSize); } } }