/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.mapreduce; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.DataInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.Iterator; import java.util.Random; import junit.framework.TestCase; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.SequenceFile; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.MapFileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; /********************************************************** * MapredLoadTest generates a bunch of work that exercises * a Hadoop Map-Reduce system (and DFS, too). It goes through * the following steps: * * 1) Take inputs 'range' and 'counts'. * 2) Generate 'counts' random integers between 0 and range-1. * 3) Create a file that lists each integer between 0 and range-1, * and lists the number of times that integer was generated. * 4) Emit a (very large) file that contains all the integers * in the order generated. * 5) After the file has been generated, read it back and count * how many times each int was generated. * 6) Compare this big count-map against the original one. If * they match, then SUCCESS! Otherwise, FAILURE! * * OK, that's how we can think about it. What are the map-reduce * steps that get the job done? * * 1) In a non-mapred thread, take the inputs 'range' and 'counts'. * 2) In a non-mapread thread, generate the answer-key and write to disk. * 3) In a mapred job, divide the answer key into K jobs. * 4) A mapred 'generator' task consists of K map jobs. Each reads * an individual "sub-key", and generates integers according to * to it (though with a random ordering). * 5) The generator's reduce task agglomerates all of those files * into a single one. * 6) A mapred 'reader' task consists of M map jobs. The output * file is cut into M pieces. Each of the M jobs counts the * individual ints in its chunk and creates a map of all seen ints. * 7) A mapred job integrates all the count files into a single one. * **********************************************************/ public class TestMapReduce extends TestCase { private static FileSystem fs; static { try { fs = FileSystem.getLocal(new Configuration()); } catch (IOException ioe) { fs = null; } } /** * Modified to make it a junit test. * The RandomGen Job does the actual work of creating * a huge file of assorted numbers. It receives instructions * as to how many times each number should be counted. Then * it emits those numbers in a crazy order. * * The map() function takes a key/val pair that describes * a value-to-be-emitted (the key) and how many times it * should be emitted (the value), aka "numtimes". map() then * emits a series of intermediate key/val pairs. It emits * 'numtimes' of these. The key is a random number and the * value is the 'value-to-be-emitted'. * * The system collates and merges these pairs according to * the random number. reduce() function takes in a key/value * pair that consists of a crazy random number and a series * of values that should be emitted. The random number key * is now dropped, and reduce() emits a pair for every intermediate value. * The emitted key is an intermediate value. The emitted value * is just a blank string. Thus, we've created a huge file * of numbers in random order, but where each number appears * as many times as we were instructed. */ static class RandomGenMapper extends Mapper<IntWritable, IntWritable, IntWritable, IntWritable> { public void map(IntWritable key, IntWritable val, Context context) throws IOException, InterruptedException { int randomVal = key.get(); int randomCount = val.get(); for (int i = 0; i < randomCount; i++) { context.write(new IntWritable(Math.abs(r.nextInt())), new IntWritable(randomVal)); } } } /** */ static class RandomGenReducer extends Reducer<IntWritable, IntWritable, IntWritable, IntWritable> { public void reduce(IntWritable key, Iterable<IntWritable> it, Context context) throws IOException, InterruptedException { for (IntWritable iw : it) { context.write(iw, null); } } } /** * The RandomCheck Job does a lot of our work. It takes * in a num/string keyspace, and transforms it into a * key/count(int) keyspace. * * The map() function just emits a num/1 pair for every * num/string input pair. * * The reduce() function sums up all the 1s that were * emitted for a single key. It then emits the key/total * pair. * * This is used to regenerate the random number "answer key". * Each key here is a random number, and the count is the * number of times the number was emitted. */ static class RandomCheckMapper extends Mapper<WritableComparable<?>, Text, IntWritable, IntWritable> { public void map(WritableComparable<?> key, Text val, Context context) throws IOException, InterruptedException { context.write(new IntWritable( Integer.parseInt(val.toString().trim())), new IntWritable(1)); } } /** */ static class RandomCheckReducer extends Reducer<IntWritable, IntWritable, IntWritable, IntWritable> { public void reduce(IntWritable key, Iterable<IntWritable> it, Context context) throws IOException, InterruptedException { int keyint = key.get(); int count = 0; for (IntWritable iw : it) { count++; } context.write(new IntWritable(keyint), new IntWritable(count)); } } /** * The Merge Job is a really simple one. It takes in * an int/int key-value set, and emits the same set. * But it merges identical keys by adding their values. * * Thus, the map() function is just the identity function * and reduce() just sums. Nothing to see here! */ static class MergeMapper extends Mapper<IntWritable, IntWritable, IntWritable, IntWritable> { public void map(IntWritable key, IntWritable val, Context context) throws IOException, InterruptedException { int keyint = key.get(); int valint = val.get(); context.write(new IntWritable(keyint), new IntWritable(valint)); } } static class MergeReducer extends Reducer<IntWritable, IntWritable, IntWritable, IntWritable> { public void reduce(IntWritable key, Iterator<IntWritable> it, Context context) throws IOException, InterruptedException { int keyint = key.get(); int total = 0; while (it.hasNext()) { total += it.next().get(); } context.write(new IntWritable(keyint), new IntWritable(total)); } } private static int range = 10; private static int counts = 100; private static Random r = new Random(); public void testMapred() throws Exception { launch(); } private static void launch() throws Exception { // // Generate distribution of ints. This is the answer key. // Configuration conf = new Configuration(); int countsToGo = counts; int dist[] = new int[range]; for (int i = 0; i < range; i++) { double avgInts = (1.0 * countsToGo) / (range - i); dist[i] = (int) Math.max(0, Math.round(avgInts + (Math.sqrt(avgInts) * r.nextGaussian()))); countsToGo -= dist[i]; } if (countsToGo > 0) { dist[dist.length-1] += countsToGo; } // // Write the answer key to a file. // Path testdir = new Path("mapred.loadtest"); if (!fs.mkdirs(testdir)) { throw new IOException("Mkdirs failed to create " + testdir.toString()); } Path randomIns = new Path(testdir, "genins"); if (!fs.mkdirs(randomIns)) { throw new IOException("Mkdirs failed to create " + randomIns.toString()); } Path answerkey = new Path(randomIns, "answer.key"); SequenceFile.Writer out = SequenceFile.createWriter(fs, conf, answerkey, IntWritable.class, IntWritable.class, SequenceFile.CompressionType.NONE); try { for (int i = 0; i < range; i++) { out.append(new IntWritable(i), new IntWritable(dist[i])); } } finally { out.close(); } printFiles(randomIns, conf); // // Now we need to generate the random numbers according to // the above distribution. // // We create a lot of map tasks, each of which takes at least // one "line" of the distribution. (That is, a certain number // X is to be generated Y number of times.) // // A map task emits Y key/val pairs. The val is X. The key // is a randomly-generated number. // // The reduce task gets its input sorted by key. That is, sorted // in random order. It then emits a single line of text that // for the given values. It does not emit the key. // // Because there's just one reduce task, we emit a single big // file of random numbers. // Path randomOuts = new Path(testdir, "genouts"); fs.delete(randomOuts, true); Job genJob = Job.getInstance(conf); FileInputFormat.setInputPaths(genJob, randomIns); genJob.setInputFormatClass(SequenceFileInputFormat.class); genJob.setMapperClass(RandomGenMapper.class); FileOutputFormat.setOutputPath(genJob, randomOuts); genJob.setOutputKeyClass(IntWritable.class); genJob.setOutputValueClass(IntWritable.class); genJob.setReducerClass(RandomGenReducer.class); genJob.setNumReduceTasks(1); genJob.waitForCompletion(true); printFiles(randomOuts, conf); // // Next, we read the big file in and regenerate the // original map. It's split into a number of parts. // (That number is 'intermediateReduces'.) // // We have many map tasks, each of which read at least one // of the output numbers. For each number read in, the // map task emits a key/value pair where the key is the // number and the value is "1". // // We have a single reduce task, which receives its input // sorted by the key emitted above. For each key, there will // be a certain number of "1" values. The reduce task sums // these values to compute how many times the given key was // emitted. // // The reduce task then emits a key/val pair where the key // is the number in question, and the value is the number of // times the key was emitted. This is the same format as the // original answer key (except that numbers emitted zero times // will not appear in the regenerated key.) The answer set // is split into a number of pieces. A final MapReduce job // will merge them. // // There's not really a need to go to 10 reduces here // instead of 1. But we want to test what happens when // you have multiple reduces at once. // int intermediateReduces = 10; Path intermediateOuts = new Path(testdir, "intermediateouts"); fs.delete(intermediateOuts, true); Job checkJob = Job.getInstance(conf); FileInputFormat.setInputPaths(checkJob, randomOuts); checkJob.setMapperClass(RandomCheckMapper.class); FileOutputFormat.setOutputPath(checkJob, intermediateOuts); checkJob.setOutputKeyClass(IntWritable.class); checkJob.setOutputValueClass(IntWritable.class); checkJob.setOutputFormatClass(MapFileOutputFormat.class); checkJob.setReducerClass(RandomCheckReducer.class); checkJob.setNumReduceTasks(intermediateReduces); checkJob.waitForCompletion(true); printFiles(intermediateOuts, conf); // // OK, now we take the output from the last job and // merge it down to a single file. The map() and reduce() // functions don't really do anything except reemit tuples. // But by having a single reduce task here, we end up merging // all the files. // Path finalOuts = new Path(testdir, "finalouts"); fs.delete(finalOuts, true); Job mergeJob = Job.getInstance(conf); FileInputFormat.setInputPaths(mergeJob, intermediateOuts); mergeJob.setInputFormatClass(SequenceFileInputFormat.class); mergeJob.setMapperClass(MergeMapper.class); FileOutputFormat.setOutputPath(mergeJob, finalOuts); mergeJob.setOutputKeyClass(IntWritable.class); mergeJob.setOutputValueClass(IntWritable.class); mergeJob.setOutputFormatClass(SequenceFileOutputFormat.class); mergeJob.setReducerClass(MergeReducer.class); mergeJob.setNumReduceTasks(1); mergeJob.waitForCompletion(true); printFiles(finalOuts, conf); // // Finally, we compare the reconstructed answer key with the // original one. Remember, we need to ignore zero-count items // in the original key. // boolean success = true; Path recomputedkey = new Path(finalOuts, "part-r-00000"); SequenceFile.Reader in = new SequenceFile.Reader(fs, recomputedkey, conf); int totalseen = 0; try { IntWritable key = new IntWritable(); IntWritable val = new IntWritable(); for (int i = 0; i < range; i++) { if (dist[i] == 0) { continue; } if (!in.next(key, val)) { System.err.println("Cannot read entry " + i); success = false; break; } else { if (!((key.get() == i) && (val.get() == dist[i]))) { System.err.println("Mismatch! Pos=" + key.get() + ", i=" + i + ", val=" + val.get() + ", dist[i]=" + dist[i]); success = false; } totalseen += val.get(); } } if (success) { if (in.next(key, val)) { System.err.println("Unnecessary lines in recomputed key!"); success = false; } } } finally { in.close(); } int originalTotal = 0; for (int i = 0; i < dist.length; i++) { originalTotal += dist[i]; } System.out.println("Original sum: " + originalTotal); System.out.println("Recomputed sum: " + totalseen); // // Write to "results" whether the test succeeded or not. // Path resultFile = new Path(testdir, "results"); BufferedWriter bw = new BufferedWriter( new OutputStreamWriter(fs.create(resultFile))); try { bw.write("Success=" + success + "\n"); System.out.println("Success=" + success); } finally { bw.close(); } assertTrue("testMapRed failed", success); fs.delete(testdir, true); } private static void printTextFile(FileSystem fs, Path p) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(fs.open(p))); String line; while ((line = in.readLine()) != null) { System.out.println(" Row: " + line); } in.close(); } private static void printSequenceFile(FileSystem fs, Path p, Configuration conf) throws IOException { SequenceFile.Reader r = new SequenceFile.Reader(fs, p, conf); Object key = null; Object value = null; while ((key = r.next(key)) != null) { value = r.getCurrentValue(value); System.out.println(" Row: " + key + ", " + value); } r.close(); } private static boolean isSequenceFile(FileSystem fs, Path f) throws IOException { DataInputStream in = fs.open(f); byte[] seq = "SEQ".getBytes(); for(int i=0; i < seq.length; ++i) { if (seq[i] != in.read()) { return false; } } return true; } private static void printFiles(Path dir, Configuration conf) throws IOException { FileSystem fs = dir.getFileSystem(conf); for(FileStatus f: fs.listStatus(dir)) { System.out.println("Reading " + f.getPath() + ": "); if (f.isDirectory()) { System.out.println(" it is a map file."); printSequenceFile(fs, new Path(f.getPath(), "data"), conf); } else if (isSequenceFile(fs, f.getPath())) { System.out.println(" it is a sequence file."); printSequenceFile(fs, f.getPath(), conf); } else { System.out.println(" it is a text file."); printTextFile(fs, f.getPath()); } } } /** * Launches all the tasks in order. */ public static void main(String[] argv) throws Exception { if (argv.length < 2) { System.err.println("Usage: TestMapReduce <range> <counts>"); System.err.println(); System.err.println("Note: a good test will have a <counts> value" + " that is substantially larger than the <range>"); return; } int i = 0; range = Integer.parseInt(argv[i++]); counts = Integer.parseInt(argv[i++]); launch(); } }