package org.bouncycastle.pqc.jcajce.provider.mceliece; import org.bouncycastle.pqc.crypto.mceliece.McElieceCCA2PrivateKeyParameters; import org.bouncycastle.pqc.crypto.mceliece.McElieceCCA2PublicKeyParameters; import org.bouncycastle.pqc.math.linearalgebra.GF2Matrix; import org.bouncycastle.pqc.math.linearalgebra.GF2Vector; import org.bouncycastle.pqc.math.linearalgebra.GF2mField; import org.bouncycastle.pqc.math.linearalgebra.GoppaCode; import org.bouncycastle.pqc.math.linearalgebra.Permutation; import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; import org.bouncycastle.pqc.math.linearalgebra.Vector; /** * Core operations for the CCA-secure variants of McEliece. */ public final class McElieceCCA2Primitives { /** * Default constructor (private). */ private McElieceCCA2Primitives() { } /** * The McEliece encryption primitive. * * @param pubKey the public key * @param m the message vector * @param z the error vector * @return <tt>m*G + z</tt> */ public static GF2Vector encryptionPrimitive(BCMcElieceCCA2PublicKey pubKey, GF2Vector m, GF2Vector z) { GF2Matrix matrixG = pubKey.getG(); Vector mG = matrixG.leftMultiplyLeftCompactForm(m); return (GF2Vector)mG.add(z); } public static GF2Vector encryptionPrimitive(McElieceCCA2PublicKeyParameters pubKey, GF2Vector m, GF2Vector z) { GF2Matrix matrixG = pubKey.getMatrixG(); Vector mG = matrixG.leftMultiplyLeftCompactForm(m); return (GF2Vector)mG.add(z); } /** * The McEliece decryption primitive. * * @param privKey the private key * @param c the ciphertext vector <tt>c = m*G + z</tt> * @return the message vector <tt>m</tt> and the error vector <tt>z</tt> */ public static GF2Vector[] decryptionPrimitive( BCMcElieceCCA2PrivateKey privKey, GF2Vector c) { // obtain values from private key int k = privKey.getK(); Permutation p = privKey.getP(); GF2mField field = privKey.getField(); PolynomialGF2mSmallM gp = privKey.getGoppaPoly(); GF2Matrix h = privKey.getH(); PolynomialGF2mSmallM[] q = privKey.getQInv(); // compute inverse permutation P^-1 Permutation pInv = p.computeInverse(); // multiply c with permutation P^-1 GF2Vector cPInv = (GF2Vector)c.multiply(pInv); // compute syndrome of cP^-1 GF2Vector syndVec = (GF2Vector)h.rightMultiply(cPInv); // decode syndrome GF2Vector errors = GoppaCode.syndromeDecode(syndVec, field, gp, q); GF2Vector mG = (GF2Vector)cPInv.add(errors); // multiply codeword and error vector with P mG = (GF2Vector)mG.multiply(p); errors = (GF2Vector)errors.multiply(p); // extract plaintext vector (last k columns of mG) GF2Vector m = mG.extractRightVector(k); // return vectors return new GF2Vector[]{m, errors}; } public static GF2Vector[] decryptionPrimitive( McElieceCCA2PrivateKeyParameters privKey, GF2Vector c) { // obtain values from private key int k = privKey.getK(); Permutation p = privKey.getP(); GF2mField field = privKey.getField(); PolynomialGF2mSmallM gp = privKey.getGoppaPoly(); GF2Matrix h = privKey.getH(); PolynomialGF2mSmallM[] q = privKey.getQInv(); // compute inverse permutation P^-1 Permutation pInv = p.computeInverse(); // multiply c with permutation P^-1 GF2Vector cPInv = (GF2Vector)c.multiply(pInv); // compute syndrome of cP^-1 GF2Vector syndVec = (GF2Vector)h.rightMultiply(cPInv); // decode syndrome GF2Vector errors = GoppaCode.syndromeDecode(syndVec, field, gp, q); GF2Vector mG = (GF2Vector)cPInv.add(errors); // multiply codeword and error vector with P mG = (GF2Vector)mG.multiply(p); errors = (GF2Vector)errors.multiply(p); // extract plaintext vector (last k columns of mG) GF2Vector m = mG.extractRightVector(k); // return vectors return new GF2Vector[]{m, errors}; } }