/* * Licensed to Elasticsearch under one or more contributor * license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright * ownership. Elasticsearch licenses this file to you under * the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.elasticsearch.common.util; import org.elasticsearch.common.component.AbstractComponent; import org.elasticsearch.common.lease.Releasable; import org.elasticsearch.common.lease.Releasables; import org.elasticsearch.common.recycler.AbstractRecyclerC; import org.elasticsearch.common.recycler.Recycler; import org.elasticsearch.common.settings.Setting; import org.elasticsearch.common.settings.Setting.Property; import org.elasticsearch.common.settings.Settings; import org.elasticsearch.common.unit.ByteSizeValue; import org.elasticsearch.common.util.concurrent.EsExecutors; import java.util.Arrays; import java.util.Locale; import static org.elasticsearch.common.recycler.Recyclers.concurrent; import static org.elasticsearch.common.recycler.Recyclers.concurrentDeque; import static org.elasticsearch.common.recycler.Recyclers.dequeFactory; import static org.elasticsearch.common.recycler.Recyclers.none; /** A recycler of fixed-size pages. */ public class PageCacheRecycler extends AbstractComponent implements Releasable { public static final Setting<Type> TYPE_SETTING = new Setting<>("cache.recycler.page.type", Type.CONCURRENT.name(), Type::parse, Property.NodeScope); public static final Setting<ByteSizeValue> LIMIT_HEAP_SETTING = Setting.memorySizeSetting("cache.recycler.page.limit.heap", "10%", Property.NodeScope); public static final Setting<Double> WEIGHT_BYTES_SETTING = Setting.doubleSetting("cache.recycler.page.weight.bytes", 1d, 0d, Property.NodeScope); public static final Setting<Double> WEIGHT_LONG_SETTING = Setting.doubleSetting("cache.recycler.page.weight.longs", 1d, 0d, Property.NodeScope); public static final Setting<Double> WEIGHT_INT_SETTING = Setting.doubleSetting("cache.recycler.page.weight.ints", 1d, 0d, Property.NodeScope); // object pages are less useful to us so we give them a lower weight by default public static final Setting<Double> WEIGHT_OBJECTS_SETTING = Setting.doubleSetting("cache.recycler.page.weight.objects", 0.1d, 0d, Property.NodeScope); private final Recycler<byte[]> bytePage; private final Recycler<int[]> intPage; private final Recycler<long[]> longPage; private final Recycler<Object[]> objectPage; @Override public void close() { Releasables.close(true, bytePage, intPage, longPage, objectPage); } protected PageCacheRecycler(Settings settings) { super(settings); final Type type = TYPE_SETTING .get(settings); final long limit = LIMIT_HEAP_SETTING .get(settings).getBytes(); final int availableProcessors = EsExecutors.numberOfProcessors(settings); // We have a global amount of memory that we need to divide across data types. // Since some types are more useful than other ones we give them different weights. // Trying to store all of them in a single stack would be problematic because eg. // a work load could fill the recycler with only byte[] pages and then another // workload that would work with double[] pages couldn't recycle them because there // is no space left in the stack/queue. LRU/LFU policies are not an option either // because they would make obtain/release too costly: we really need constant-time // operations. // Ultimately a better solution would be to only store one kind of data and have the // ability to interpret it either as a source of bytes, doubles, longs, etc. eg. thanks // to direct ByteBuffers or sun.misc.Unsafe on a byte[] but this would have other issues // that would need to be addressed such as garbage collection of native memory or safety // of Unsafe writes. final double bytesWeight = WEIGHT_BYTES_SETTING .get(settings); final double intsWeight = WEIGHT_INT_SETTING .get(settings); final double longsWeight = WEIGHT_LONG_SETTING .get(settings); final double objectsWeight = WEIGHT_OBJECTS_SETTING .get(settings); final double totalWeight = bytesWeight + intsWeight + longsWeight + objectsWeight; final int maxPageCount = (int) Math.min(Integer.MAX_VALUE, limit / BigArrays.PAGE_SIZE_IN_BYTES); final int maxBytePageCount = (int) (bytesWeight * maxPageCount / totalWeight); bytePage = build(type, maxBytePageCount, availableProcessors, new AbstractRecyclerC<byte[]>() { @Override public byte[] newInstance(int sizing) { return new byte[BigArrays.BYTE_PAGE_SIZE]; } @Override public void recycle(byte[] value) { // nothing to do } }); final int maxIntPageCount = (int) (intsWeight * maxPageCount / totalWeight); intPage = build(type, maxIntPageCount, availableProcessors, new AbstractRecyclerC<int[]>() { @Override public int[] newInstance(int sizing) { return new int[BigArrays.INT_PAGE_SIZE]; } @Override public void recycle(int[] value) { // nothing to do } }); final int maxLongPageCount = (int) (longsWeight * maxPageCount / totalWeight); longPage = build(type, maxLongPageCount, availableProcessors, new AbstractRecyclerC<long[]>() { @Override public long[] newInstance(int sizing) { return new long[BigArrays.LONG_PAGE_SIZE]; } @Override public void recycle(long[] value) { // nothing to do } }); final int maxObjectPageCount = (int) (objectsWeight * maxPageCount / totalWeight); objectPage = build(type, maxObjectPageCount, availableProcessors, new AbstractRecyclerC<Object[]>() { @Override public Object[] newInstance(int sizing) { return new Object[BigArrays.OBJECT_PAGE_SIZE]; } @Override public void recycle(Object[] value) { Arrays.fill(value, null); // we need to remove the strong refs on the objects stored in the array } }); assert BigArrays.PAGE_SIZE_IN_BYTES * (maxBytePageCount + maxIntPageCount + maxLongPageCount + maxObjectPageCount) <= limit; } public Recycler.V<byte[]> bytePage(boolean clear) { final Recycler.V<byte[]> v = bytePage.obtain(); if (v.isRecycled() && clear) { Arrays.fill(v.v(), (byte) 0); } return v; } public Recycler.V<int[]> intPage(boolean clear) { final Recycler.V<int[]> v = intPage.obtain(); if (v.isRecycled() && clear) { Arrays.fill(v.v(), 0); } return v; } public Recycler.V<long[]> longPage(boolean clear) { final Recycler.V<long[]> v = longPage.obtain(); if (v.isRecycled() && clear) { Arrays.fill(v.v(), 0L); } return v; } public Recycler.V<Object[]> objectPage() { // object pages are cleared on release anyway return objectPage.obtain(); } private static <T> Recycler<T> build(Type type, int limit, int availableProcessors, Recycler.C<T> c) { final Recycler<T> recycler; if (limit == 0) { recycler = none(c); } else { recycler = type.build(c, limit, availableProcessors); } return recycler; } public enum Type { QUEUE { @Override <T> Recycler<T> build(Recycler.C<T> c, int limit, int availableProcessors) { return concurrentDeque(c, limit); } }, CONCURRENT { @Override <T> Recycler<T> build(Recycler.C<T> c, int limit, int availableProcessors) { return concurrent(dequeFactory(c, limit / availableProcessors), availableProcessors); } }, NONE { @Override <T> Recycler<T> build(Recycler.C<T> c, int limit, int availableProcessors) { return none(c); } }; public static Type parse(String type) { try { return Type.valueOf(type.toUpperCase(Locale.ROOT)); } catch (IllegalArgumentException e) { throw new IllegalArgumentException("no type support [" + type + "]"); } } abstract <T> Recycler<T> build(Recycler.C<T> c, int limit, int availableProcessors); } }