/* * Licensed to Elasticsearch under one or more contributor * license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright * ownership. Elasticsearch licenses this file to you under * the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.elasticsearch.common.geo; import org.apache.lucene.geo.Rectangle; import org.apache.lucene.spatial.prefix.tree.GeohashPrefixTree; import org.apache.lucene.spatial.prefix.tree.QuadPrefixTree; import org.apache.lucene.util.SloppyMath; import org.elasticsearch.ElasticsearchParseException; import org.elasticsearch.common.unit.DistanceUnit; import org.elasticsearch.common.xcontent.XContentParser; import org.elasticsearch.common.xcontent.XContentParser.Token; import org.elasticsearch.index.fielddata.FieldData; import org.elasticsearch.index.fielddata.GeoPointValues; import org.elasticsearch.index.fielddata.MultiGeoPointValues; import org.elasticsearch.index.fielddata.NumericDoubleValues; import org.elasticsearch.index.fielddata.SortedNumericDoubleValues; import org.elasticsearch.index.fielddata.SortingNumericDoubleValues; import java.io.IOException; public class GeoUtils { /** Maximum valid latitude in degrees. */ public static final double MAX_LAT = 90.0; /** Minimum valid latitude in degrees. */ public static final double MIN_LAT = -90.0; /** Maximum valid longitude in degrees. */ public static final double MAX_LON = 180.0; /** Minimum valid longitude in degrees. */ public static final double MIN_LON = -180.0; public static final String LATITUDE = "lat"; public static final String LONGITUDE = "lon"; public static final String GEOHASH = "geohash"; /** Earth ellipsoid major axis defined by WGS 84 in meters */ public static final double EARTH_SEMI_MAJOR_AXIS = 6378137.0; // meters (WGS 84) /** Earth ellipsoid minor axis defined by WGS 84 in meters */ public static final double EARTH_SEMI_MINOR_AXIS = 6356752.314245; // meters (WGS 84) /** Earth mean radius defined by WGS 84 in meters */ public static final double EARTH_MEAN_RADIUS = 6371008.7714D; // meters (WGS 84) /** Earth axis ratio defined by WGS 84 (0.996647189335) */ public static final double EARTH_AXIS_RATIO = EARTH_SEMI_MINOR_AXIS / EARTH_SEMI_MAJOR_AXIS; /** Earth ellipsoid equator length in meters */ public static final double EARTH_EQUATOR = 2*Math.PI * EARTH_SEMI_MAJOR_AXIS; /** Earth ellipsoid polar distance in meters */ public static final double EARTH_POLAR_DISTANCE = Math.PI * EARTH_SEMI_MINOR_AXIS; /** rounding error for quantized latitude and longitude values */ public static final double TOLERANCE = 1E-6; /** Returns true if latitude is actually a valid latitude value.*/ public static boolean isValidLatitude(double latitude) { if (Double.isNaN(latitude) || Double.isInfinite(latitude) || latitude < GeoUtils.MIN_LAT || latitude > GeoUtils.MAX_LAT) { return false; } return true; } /** Returns true if longitude is actually a valid longitude value. */ public static boolean isValidLongitude(double longitude) { if (Double.isNaN(longitude) || Double.isNaN(longitude) || longitude < GeoUtils.MIN_LON || longitude > GeoUtils.MAX_LON) { return false; } return true; } /** * Calculate the width (in meters) of geohash cells at a specific level * @param level geohash level must be greater or equal to zero * @return the width of cells at level in meters */ public static double geoHashCellWidth(int level) { assert level>=0; // Geohash cells are split into 32 cells at each level. the grid // alternates at each level between a 8x4 and a 4x8 grid return EARTH_EQUATOR / (1L<<((((level+1)/2)*3) + ((level/2)*2))); } /** * Calculate the width (in meters) of quadtree cells at a specific level * @param level quadtree level must be greater or equal to zero * @return the width of cells at level in meters */ public static double quadTreeCellWidth(int level) { assert level >=0; return EARTH_EQUATOR / (1L<<level); } /** * Calculate the height (in meters) of geohash cells at a specific level * @param level geohash level must be greater or equal to zero * @return the height of cells at level in meters */ public static double geoHashCellHeight(int level) { assert level>=0; // Geohash cells are split into 32 cells at each level. the grid // alternates at each level between a 8x4 and a 4x8 grid return EARTH_POLAR_DISTANCE / (1L<<((((level+1)/2)*2) + ((level/2)*3))); } /** * Calculate the height (in meters) of quadtree cells at a specific level * @param level quadtree level must be greater or equal to zero * @return the height of cells at level in meters */ public static double quadTreeCellHeight(int level) { assert level>=0; return EARTH_POLAR_DISTANCE / (1L<<level); } /** * Calculate the size (in meters) of geohash cells at a specific level * @param level geohash level must be greater or equal to zero * @return the size of cells at level in meters */ public static double geoHashCellSize(int level) { assert level>=0; final double w = geoHashCellWidth(level); final double h = geoHashCellHeight(level); return Math.sqrt(w*w + h*h); } /** * Calculate the size (in meters) of quadtree cells at a specific level * @param level quadtree level must be greater or equal to zero * @return the size of cells at level in meters */ public static double quadTreeCellSize(int level) { assert level>=0; return Math.sqrt(EARTH_POLAR_DISTANCE*EARTH_POLAR_DISTANCE + EARTH_EQUATOR*EARTH_EQUATOR) / (1L<<level); } /** * Calculate the number of levels needed for a specific precision. Quadtree * cells will not exceed the specified size (diagonal) of the precision. * @param meters Maximum size of cells in meters (must greater than zero) * @return levels need to achieve precision */ public static int quadTreeLevelsForPrecision(double meters) { assert meters >= 0; if(meters == 0) { return QuadPrefixTree.MAX_LEVELS_POSSIBLE; } else { final double ratio = 1+(EARTH_POLAR_DISTANCE / EARTH_EQUATOR); // cell ratio final double width = Math.sqrt((meters*meters)/(ratio*ratio)); // convert to cell width final long part = Math.round(Math.ceil(EARTH_EQUATOR / width)); final int level = Long.SIZE - Long.numberOfLeadingZeros(part)-1; // (log_2) return (part<=(1L<<level)) ?level :(level+1); // adjust level } } /** * Calculate the number of levels needed for a specific precision. QuadTree * cells will not exceed the specified size (diagonal) of the precision. * @param distance Maximum size of cells as unit string (must greater or equal to zero) * @return levels need to achieve precision */ public static int quadTreeLevelsForPrecision(String distance) { return quadTreeLevelsForPrecision(DistanceUnit.METERS.parse(distance, DistanceUnit.DEFAULT)); } /** * Calculate the number of levels needed for a specific precision. GeoHash * cells will not exceed the specified size (diagonal) of the precision. * @param meters Maximum size of cells in meters (must greater or equal to zero) * @return levels need to achieve precision */ public static int geoHashLevelsForPrecision(double meters) { assert meters >= 0; if(meters == 0) { return GeohashPrefixTree.getMaxLevelsPossible(); } else { final double ratio = 1+(EARTH_POLAR_DISTANCE / EARTH_EQUATOR); // cell ratio final double width = Math.sqrt((meters*meters)/(ratio*ratio)); // convert to cell width final double part = Math.ceil(EARTH_EQUATOR / width); if(part == 1) return 1; final int bits = (int)Math.round(Math.ceil(Math.log(part) / Math.log(2))); final int full = bits / 5; // number of 5 bit subdivisions final int left = bits - full*5; // bit representing the last level final int even = full + (left>0?1:0); // number of even levels final int odd = full + (left>3?1:0); // number of odd levels return even+odd; } } /** * Calculate the number of levels needed for a specific precision. GeoHash * cells will not exceed the specified size (diagonal) of the precision. * @param distance Maximum size of cells as unit string (must greater or equal to zero) * @return levels need to achieve precision */ public static int geoHashLevelsForPrecision(String distance) { return geoHashLevelsForPrecision(DistanceUnit.METERS.parse(distance, DistanceUnit.DEFAULT)); } /** * Normalize longitude to lie within the -180 (exclusive) to 180 (inclusive) range. * * @param lon Longitude to normalize * @return The normalized longitude. */ public static double normalizeLon(double lon) { return centeredModulus(lon, 360); } /** * Normalize latitude to lie within the -90 to 90 (both inclusive) range. * <p> * Note: You should not normalize longitude and latitude separately, * because when normalizing latitude it may be necessary to * add a shift of 180° in the longitude. * For this purpose, you should call the * {@link #normalizePoint(GeoPoint)} function. * * @param lat Latitude to normalize * @return The normalized latitude. * @see #normalizePoint(GeoPoint) */ public static double normalizeLat(double lat) { lat = centeredModulus(lat, 360); if (lat < -90) { lat = -180 - lat; } else if (lat > 90) { lat = 180 - lat; } return lat; } /** * Normalize the geo {@code Point} for its coordinates to lie within their * respective normalized ranges. * <p> * Note: A shift of 180° is applied in the longitude if necessary, * in order to normalize properly the latitude. * * @param point The point to normalize in-place. */ public static void normalizePoint(GeoPoint point) { normalizePoint(point, true, true); } /** * Normalize the geo {@code Point} for the given coordinates to lie within * their respective normalized ranges. * <p> * You can control which coordinate gets normalized with the two flags. * <p> * Note: A shift of 180° is applied in the longitude if necessary, * in order to normalize properly the latitude. * If normalizing latitude but not longitude, it is assumed that * the longitude is in the form x+k*360, with x in ]-180;180], * and k is meaningful to the application. * Therefore x will be adjusted while keeping k preserved. * * @param point The point to normalize in-place. * @param normLat Whether to normalize latitude or leave it as is. * @param normLon Whether to normalize longitude. */ public static void normalizePoint(GeoPoint point, boolean normLat, boolean normLon) { double[] pt = {point.lon(), point.lat()}; normalizePoint(pt, normLon, normLat); point.reset(pt[1], pt[0]); } public static void normalizePoint(double[] lonLat) { normalizePoint(lonLat, true, true); } public static void normalizePoint(double[] lonLat, boolean normLon, boolean normLat) { assert lonLat != null && lonLat.length == 2; normLat = normLat && (lonLat[1] > 90 || lonLat[1] < -90); normLon = normLon && (lonLat[0] > 180 || lonLat[0] < -180); if (normLat) { lonLat[1] = centeredModulus(lonLat[1], 360); boolean shift = true; if (lonLat[1] < -90) { lonLat[1] = -180 - lonLat[1]; } else if (lonLat[1] > 90) { lonLat[1] = 180 - lonLat[1]; } else { // No need to shift the longitude, and the latitude is normalized shift = false; } if (shift) { if (normLon) { lonLat[0] += 180; } else { // Longitude won't be normalized, // keep it in the form x+k*360 (with x in ]-180;180]) // by only changing x, assuming k is meaningful for the user application. lonLat[0] += normalizeLon(lonLat[0]) > 0 ? -180 : 180; } } } if (normLon) { lonLat[0] = centeredModulus(lonLat[0], 360); } } private static double centeredModulus(double dividend, double divisor) { double rtn = dividend % divisor; if (rtn <= 0) { rtn += divisor; } if (rtn > divisor / 2) { rtn -= divisor; } return rtn; } /** * Parse a {@link GeoPoint} with a {@link XContentParser}: * * @param parser {@link XContentParser} to parse the value from * @return new {@link GeoPoint} parsed from the parse */ public static GeoPoint parseGeoPoint(XContentParser parser) throws IOException, ElasticsearchParseException { return parseGeoPoint(parser, new GeoPoint()); } /** * Parse a {@link GeoPoint} with a {@link XContentParser}. A geopoint has one of the following forms: * * <ul> * <li>Object: <pre>{"lat": <i><latitude></i>, "lon": <i><longitude></i>}</pre></li> * <li>String: <pre>"<i><latitude></i>,<i><longitude></i>"</pre></li> * <li>Geohash: <pre>"<i><geohash></i>"</pre></li> * <li>Array: <pre>[<i><longitude></i>,<i><latitude></i>]</pre></li> * </ul> * * @param parser {@link XContentParser} to parse the value from * @param point A {@link GeoPoint} that will be reset by the values parsed * @return new {@link GeoPoint} parsed from the parse */ public static GeoPoint parseGeoPoint(XContentParser parser, GeoPoint point) throws IOException, ElasticsearchParseException { double lat = Double.NaN; double lon = Double.NaN; String geohash = null; NumberFormatException numberFormatException = null; if(parser.currentToken() == Token.START_OBJECT) { while(parser.nextToken() != Token.END_OBJECT) { if(parser.currentToken() == Token.FIELD_NAME) { String field = parser.currentName(); if(LATITUDE.equals(field)) { parser.nextToken(); switch (parser.currentToken()) { case VALUE_NUMBER: case VALUE_STRING: try { lat = parser.doubleValue(true); } catch (NumberFormatException e) { numberFormatException = e; } break; default: throw new ElasticsearchParseException("latitude must be a number"); } } else if (LONGITUDE.equals(field)) { parser.nextToken(); switch (parser.currentToken()) { case VALUE_NUMBER: case VALUE_STRING: try { lon = parser.doubleValue(true); } catch (NumberFormatException e) { numberFormatException = e; } break; default: throw new ElasticsearchParseException("longitude must be a number"); } } else if (GEOHASH.equals(field)) { if(parser.nextToken() == Token.VALUE_STRING) { geohash = parser.text(); } else { throw new ElasticsearchParseException("geohash must be a string"); } } else { throw new ElasticsearchParseException("field must be either [{}], [{}] or [{}]", LATITUDE, LONGITUDE, GEOHASH); } } else { throw new ElasticsearchParseException("token [{}] not allowed", parser.currentToken()); } } if (geohash != null) { if(!Double.isNaN(lat) || !Double.isNaN(lon)) { throw new ElasticsearchParseException("field must be either lat/lon or geohash"); } else { return point.resetFromGeoHash(geohash); } } else if (numberFormatException != null) { throw new ElasticsearchParseException("[{}] and [{}] must be valid double values", numberFormatException, LATITUDE, LONGITUDE); } else if (Double.isNaN(lat)) { throw new ElasticsearchParseException("field [{}] missing", LATITUDE); } else if (Double.isNaN(lon)) { throw new ElasticsearchParseException("field [{}] missing", LONGITUDE); } else { return point.reset(lat, lon); } } else if(parser.currentToken() == Token.START_ARRAY) { int element = 0; while(parser.nextToken() != Token.END_ARRAY) { if(parser.currentToken() == Token.VALUE_NUMBER) { element++; if(element == 1) { lon = parser.doubleValue(); } else if(element == 2) { lat = parser.doubleValue(); } else { throw new ElasticsearchParseException("only two values allowed"); } } else { throw new ElasticsearchParseException("numeric value expected"); } } return point.reset(lat, lon); } else if(parser.currentToken() == Token.VALUE_STRING) { String data = parser.text(); return parseGeoPoint(data, point); } else { throw new ElasticsearchParseException("geo_point expected"); } } /** parse a {@link GeoPoint} from a String */ public static GeoPoint parseGeoPoint(String data, GeoPoint point) { int comma = data.indexOf(','); if(comma > 0) { double lat = Double.parseDouble(data.substring(0, comma).trim()); double lon = Double.parseDouble(data.substring(comma + 1).trim()); return point.reset(lat, lon); } else { return point.resetFromGeoHash(data); } } /** Returns the maximum distance/radius (in meters) from the point 'center' before overlapping */ public static double maxRadialDistanceMeters(final double centerLat, final double centerLon) { if (Math.abs(centerLat) == MAX_LAT) { return SloppyMath.haversinMeters(centerLat, centerLon, 0, centerLon); } return SloppyMath.haversinMeters(centerLat, centerLon, centerLat, (MAX_LON + centerLon) % 360); } /** Return the distance (in meters) between 2 lat,lon geo points using the haversine method implemented by lucene */ public static double arcDistance(double lat1, double lon1, double lat2, double lon2) { return SloppyMath.haversinMeters(lat1, lon1, lat2, lon2); } /** * Return the distance (in meters) between 2 lat,lon geo points using a simple tangential plane * this provides a faster alternative to {@link GeoUtils#arcDistance} but is inaccurate for distances greater than * 4 decimal degrees */ public static double planeDistance(double lat1, double lon1, double lat2, double lon2) { double x = (lon2 - lon1) * SloppyMath.TO_RADIANS * Math.cos((lat2 + lat1) / 2.0 * SloppyMath.TO_RADIANS); double y = (lat2 - lat1) * SloppyMath.TO_RADIANS; return Math.sqrt(x * x + y * y) * EARTH_MEAN_RADIUS; } /** check if point is within a rectangle * todo: move this to lucene Rectangle class */ public static boolean rectangleContainsPoint(Rectangle r, double lat, double lon) { if (lat >= r.minLat && lat <= r.maxLat) { // if rectangle crosses the dateline we only check if the lon is >= min or max return r.crossesDateline() ? lon >= r.minLon || lon <= r.maxLon : lon >= r.minLon && lon <= r.maxLon; } return false; } /** * Return a {@link SortedNumericDoubleValues} instance that returns the distances to a list of geo-points * for each document. */ public static SortedNumericDoubleValues distanceValues(final GeoDistance distance, final DistanceUnit unit, final MultiGeoPointValues geoPointValues, final GeoPoint... fromPoints) { final GeoPointValues singleValues = FieldData.unwrapSingleton(geoPointValues); if (singleValues != null && fromPoints.length == 1) { return FieldData.singleton(new NumericDoubleValues() { @Override public boolean advanceExact(int doc) throws IOException { return singleValues.advanceExact(doc); } @Override public double doubleValue() throws IOException { final GeoPoint from = fromPoints[0]; final GeoPoint to = singleValues.geoPointValue(); return distance.calculate(from.lat(), from.lon(), to.lat(), to.lon(), unit); } }); } else { return new SortingNumericDoubleValues() { @Override public boolean advanceExact(int target) throws IOException { if (geoPointValues.advanceExact(target)) { resize(geoPointValues.docValueCount() * fromPoints.length); int v = 0; for (int i = 0; i < geoPointValues.docValueCount(); ++i) { final GeoPoint point = geoPointValues.nextValue(); for (GeoPoint from : fromPoints) { values[v] = distance.calculate(from.lat(), from.lon(), point.lat(), point.lon(), unit); v++; } } sort(); return true; } else { return false; } } }; } } private GeoUtils() { } }