/* Copyright 2009-2016 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.problem.misc; import org.moeaframework.core.Solution; import org.moeaframework.core.variable.RealVariable; import org.moeaframework.problem.AbstractProblem; /** * The Tanaka problem. * <p> * Properties: * <ul> * <li>Connected Pareto set * <li>Disconnected and convoluted Pareto front * <li>Constrained * </ul> * <p> * References: * <ol> * <li>Van Veldhuizen, D. A (1999). "Multiobjective Evolutionary Algorithms: * Classifications, Analyses, and New Innovations." Air Force Institute * of Technology, Ph.D. Thesis, Appendix B. * </ol> */ public class Tanaka extends AbstractProblem { /** * Constructs the Tanaka problem. */ public Tanaka() { super(2, 2, 2); } @Override public void evaluate(Solution solution) { double x = ((RealVariable)solution.getVariable(0)).getValue(); double y = ((RealVariable)solution.getVariable(1)).getValue(); double c1 = -Math.pow(x, 2.0) - Math.pow(y, 2.0) + 1.0 + 0.1*Math.cos(16.0*Math.atan(x / y)); double c2 = Math.pow(x - 0.5, 2.0) + Math.pow(y - 0.5, 2.0) - 0.5; solution.setObjective(0, x); solution.setObjective(1, y); solution.setConstraint(0, c1 <= 0.0 ? 0.0 : c1); solution.setConstraint(1, c2 <= 0.0 ? 0.0 : c2); } @Override public Solution newSolution() { Solution solution = new Solution(2, 2, 2); solution.setVariable(0, new RealVariable(Math.nextUp(0.0), Math.PI)); solution.setVariable(1, new RealVariable(Math.nextUp(0.0), Math.PI)); return solution; } }