/* Copyright 2009-2016 David Hadka
*
* This file is part of the MOEA Framework.
*
* The MOEA Framework is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* The MOEA Framework is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>.
*/
package org.moeaframework.problem.misc;
import org.moeaframework.core.Solution;
import org.moeaframework.core.variable.RealVariable;
import org.moeaframework.problem.AbstractProblem;
/**
* The Rendon problem.
* <p>
* Properties:
* <ul>
* <li>Connected Pareto set
* <li>Convex Pareto front
* </ul>
* <p>
* References:
* <ol>
* <li>Van Veldhuizen, D. A (1999). "Multiobjective Evolutionary Algorithms:
* Classifications, Analyses, and New Innovations." Air Force Institute
* of Technology, Ph.D. Thesis, Appendix B.
* <li>Valenzuela-Rendon, M., et al. (1997). "A Non-Generational Genetic
* Algorithm for Multiobjective Optimization." Proceedings of the
* Seventh International Conference on Genetic Algorithms, pp. 658-665.
* </ol>
*/
public class Rendon extends AbstractProblem {
/**
* Constructs the Rendon problem.
*/
public Rendon() {
super(2, 2);
}
@Override
public void evaluate(Solution solution) {
double x = ((RealVariable)solution.getVariable(0)).getValue();
double y = ((RealVariable)solution.getVariable(1)).getValue();
double f1 = 1.0 / (Math.pow(x, 2.0) + Math.pow(y, 2.0) + 1.0);
double f2 = Math.pow(x, 2.0) + 3.0*Math.pow(y, 2.0) + 1.0;
solution.setObjective(0, f1);
solution.setObjective(1, f2);
}
@Override
public Solution newSolution() {
Solution solution = new Solution(2, 2);
solution.setVariable(0, new RealVariable(-3.0, 3.0));
solution.setVariable(1, new RealVariable(-3.0, 3.0));
return solution;
}
}