/* Copyright 2009-2016 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.problem.misc; import org.moeaframework.core.Solution; import org.moeaframework.core.variable.EncodingUtils; import org.moeaframework.problem.AbstractProblem; import org.moeaframework.problem.AnalyticalProblem; /** * The Binh (4) problem. The global feasible optimum is at {@code (3.0, 0.5)}. * <p> * Properties: * <ul> * <li>Connected Pareto set * <li>Degenerate, concave Pareto front * <li>Constrained * </ul> * <p> * References: * <ol> * <li>Binh, T. T., and Korn, U. (1997). "Multiobjective Evolution Strategy * with Linear and Nonlinear Constraints." Proc. of the 15th IMACS * World Congress on Scientific Computation, Modeling and Applied * Mathematics, pp. 357-362. * <li>Van Veldhuizen, D. A (1999). "Multiobjective Evolutionary Algorithms: * Classifications, Analyses, and New Innovations." Air Force Institute * of Technology, Ph.D. Thesis, Appendix B. * </ol> */ public class Binh4 extends AbstractProblem implements AnalyticalProblem { /** * Constructs the Binh (4) problem. */ public Binh4() { super(2, 3, 2); } @Override public void evaluate(Solution solution) { double x = EncodingUtils.getReal(solution.getVariable(0)); double y = EncodingUtils.getReal(solution.getVariable(1)); double f1 = 1.5 - x*(1.0 - y); double f2 = 2.25 - x*(1.0 - Math.pow(y, 2.0)); double f3 = 2.625 - x*(1.0 - Math.pow(y, 3.0)); double c1 = -Math.pow(x, 2.0) - Math.pow(y - 0.5, 2.0) + 9.0; double c2 = Math.pow(x - 1.0, 2.0) + Math.pow(y - 0.5, 2.0) - 6.25; solution.setObjective(0, f1); solution.setObjective(1, f2); solution.setObjective(2, f3); solution.setConstraint(0, c1 <= 0.0 ? 0.0 : c1); solution.setConstraint(1, c2 <= 0.0 ? 0.0 : c2); } @Override public Solution newSolution() { Solution solution = new Solution(2, 3, 2); solution.setVariable(0, EncodingUtils.newReal(-10.0, 10.0)); solution.setVariable(1, EncodingUtils.newReal(-10.0, 10.0)); return solution; } @Override public Solution generate() { Solution solution = newSolution(); EncodingUtils.setReal(solution.getVariable(0), 3.0); EncodingUtils.setReal(solution.getVariable(1), 0.5); evaluate(solution); return solution; } }