/* Copyright 2009-2016 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.problem.misc; import org.moeaframework.core.Solution; import org.moeaframework.core.variable.RealVariable; import org.moeaframework.problem.AbstractProblem; /** * The Tamaki problem. * <p> * Properties: * <ul> * <li>Connected and curved Pareto set * <li>Curved Pareto front * <li>Constrained * <li>Maximization (objectives are negated) * </ul> * <p> * References: * <ol> * <li>Van Veldhuizen, D. A (1999). "Multiobjective Evolutionary Algorithms: * Classifications, Analyses, and New Innovations." Air Force Institute * of Technology, Ph.D. Thesis, Appendix B. * </ol> */ public class Tamaki extends AbstractProblem { /** * Constructs the Tamaki problem. */ public Tamaki() { super(3, 3, 1); } @Override public void evaluate(Solution solution) { double x = ((RealVariable)solution.getVariable(0)).getValue(); double y = ((RealVariable)solution.getVariable(1)).getValue(); double z = ((RealVariable)solution.getVariable(2)).getValue(); double c = Math.pow(x, 2.0) + Math.pow(y, 2.0) + Math.pow(z, 2.0) - 1.0; solution.setObjective(0, -x); solution.setObjective(1, -y); solution.setObjective(2, -z); solution.setConstraint(0, c <= 0.0 ? 0.0 : c); } @Override public Solution newSolution() { Solution solution = new Solution(3, 3, 1); solution.setVariable(0, new RealVariable(0.0, 1.0)); solution.setVariable(1, new RealVariable(0.0, 1.0)); solution.setVariable(2, new RealVariable(0.0, 1.0)); return solution; } }