/* Copyright 2009-2015 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.problem.misc; import org.moeaframework.core.Solution; import org.moeaframework.core.variable.RealVariable; import org.moeaframework.problem.AbstractProblem; /** * The Belegundu problem. * <p> * Properties: * <ul> * <li>Connected Pareto set * <li>Connected Pareto front * <li>Constrained * </ul> * <p> * References: * <ol> * <li>Belegundu, A. D., et al (1994). "Multi-Objective Optimization of * Laminated Ceramic Composites Using Genetic Algorithms." Proceedings * of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary * Analysis and Optimization, Washington, D.C., pp. 1015-1022. * <li>Van Veldhuizen, D. A (1999). "Multiobjective Evolutionary Algorithms: * Classifications, Analyses, and New Innovations." Air Force Institute * of Technology, Ph.D. Thesis, Appendix B. * </ol> */ public class Belegundu extends AbstractProblem { /** * Constructs the Belegundu problem. */ public Belegundu() { super(2, 2, 2); } @Override public void evaluate(Solution solution) { double x = ((RealVariable)solution.getVariable(0)).getValue(); double y = ((RealVariable)solution.getVariable(1)).getValue(); double f1 = -2.0*x + y; double f2 = 2.0*x + y; double c1 = -x + y - 1.0; double c2 = x + y - 7.0; solution.setObjective(0, f1); solution.setObjective(1, f2); solution.setConstraint(0, c1 <= 0.0 ? 0.0 : c1); solution.setConstraint(1, c2 <= 0.0 ? 0.0 : c2); } @Override public Solution newSolution() { Solution solution = new Solution(2, 2, 2); solution.setVariable(0, new RealVariable(0.0, 5.0)); solution.setVariable(1, new RealVariable(0.0, 3.0)); return solution; } }